You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/layers/io.py

973 lines
34 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from ..wrapped_decorator import signature_safe_contextmanager
import multiprocessing
import os
import six
import sys
import threading
from ..data_feeder import DataFeeder
from .control_flow import BlockGuard
from .layer_function_generator import templatedoc
from .. import core
from ..executor import global_scope
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
default_startup_program, program_guard, Program, Variable
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
import logging
__all__ = [
'data', 'read_file', 'double_buffer', 'py_reader',
'create_py_reader_by_data', 'load'
]
def data(name,
shape,
append_batch_size=True,
dtype='float32',
lod_level=0,
type=core.VarDesc.VarType.LOD_TENSOR,
stop_gradient=True):
"""
**Data Layer**
This function takes in the input and based on whether data has
to be returned back as a minibatch, it creates the global variable by using
the helper functions. The global variables can be accessed by all the
following operators in the graph.
All the input variables of this function are passed in as local variables
to the LayerHelper constructor.
Notice that paddle would only use :code:`shape` to infer the shapes of
following variables in the network during compile-time. During run-time,
paddle would not check whether the shape of the feeded data matches the
:code:`shape` settings in this function.
Args:
name(str): The name/alias of the function
shape(list): Tuple declaring the shape. If :code:`append_batch_size` is
True and there is no -1 inside :code:`shape`, it should be
considered as the shape of the each sample. Otherwise, it
should be considered as the shape of the batched data.
append_batch_size(bool):
1. If true, it prepends -1 to the shape.
For example if shape=[1], the resulting shape is [-1, 1]. This will
be useful to set different batch size at run time.
2. If shape contains -1, such as shape=[1, -1].
append_batch_size will be enforced to be be False (ineffective)
because PaddlePaddle cannot set more than 1 unknown number on the
shape.
dtype(np.dtype|VarType|str): The type of data : float32, float16, int etc
type(VarType): The output type. By default it is LOD_TENSOR.
lod_level(int): The LoD Level. 0 means the input data is not a sequence.
stop_gradient(bool): A boolean that mentions whether gradient should flow.
Returns:
Variable: The global variable that gives access to the data.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(name='x', shape=[784], dtype='float32')
"""
helper = LayerHelper('data', **locals())
shape = list(shape)
for i in six.moves.range(len(shape)):
if shape[i] is None:
shape[i] = -1
append_batch_size = False
elif shape[i] < 0:
append_batch_size = False
if append_batch_size:
shape = [-1] + shape # append batch size as -1
data_var = helper.create_global_variable(
name=name,
shape=shape,
dtype=dtype,
type=type,
stop_gradient=stop_gradient,
lod_level=lod_level,
is_data=True)
return data_var
class BlockGuardServ(BlockGuard):
"""
BlockGuardServ class.
BlockGuardServ class is used to create an op with a block in a program.
"""
def __init__(self, server):
if not (isinstance(server, ListenAndServ)):
raise TypeError("BlockGuardServ takes a ListenAndServ")
super(BlockGuardServ, self).__init__(server.helper.main_program)
self.server = server
def __exit__(self, exc_type, exc_val, exc_tb):
if exc_type is not None:
return False
self.server.complete_op()
return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)
class ListenAndServ(object):
"""
**ListenAndServ Layer**
ListenAndServ is used to create a rpc server bind and listen
on specific TCP port, this server will run the sub-block when
received variables from clients.
Args:
endpoint(string): IP:port string which the server will listen on.
inputs(list): a list of variables that the server will get from clients.
fan_in(int): how many client are expected to report to this server, default: 1.
optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Examples:
.. code-block:: python
import paddle.fluid as fluid
with fluid.program_guard(main):
serv = layers.ListenAndServ(
"127.0.0.1:6170", ["X"], optimizer_mode=False)
with serv.do():
x = layers.data(
shape=[32, 32],
dtype='float32',
name="X",
append_batch_size=False)
fluid.initializer.Constant(value=1.0)(x, main.global_block())
layers.scale(x=x, scale=10.0, out=out_var)
exe = fluid.Executor(place)
exe.run(main)
"""
def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
self.helper = LayerHelper("listen_and_serv")
self.inputs = inputs
self.outputs = []
self.endpoint = endpoint
self.fan_in = fan_in
# FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
# general.
self.optimizer_mode = optimizer_mode
def do(self):
return BlockGuardServ(self)
def get_params_and_grads(self):
main_program = self.helper.main_program
current_block = main_program.current_block()
parent_block = self.parent_block()
# params and grads in the same order.
params = list()
grads = list()
for op in current_block.ops:
# FIXME(typhoonzero): op.inputs is None if it's cloned.
if self.optimizer_mode:
if "Grad" in op.inputs and "Param" in op.inputs:
params.append(op.inputs["Param"].name)
grads.append(op.inputs["Grad"].name)
else:
# simple recv mode, recv operators inputs.
for iname in op.input_names:
for in_var_name in op.input(iname):
params.append(parent_block.var(in_var_name))
grads.append(parent_block.var(in_var_name))
return params, grads
def parent_block(self):
prog = self.helper.main_program
parent_idx = prog.current_block().parent_idx
assert parent_idx >= 0
parent_block = prog.block(parent_idx)
return parent_block
def complete_op(self):
main_program = self.helper.main_program
current_block = main_program.current_block()
parent_block = self.parent_block()
parent_block.append_op(
type='listen_and_serv',
inputs={"X": self.inputs},
outputs={},
attrs={
'endpoint': self.endpoint,
'Fanin': self.fan_in,
'optimize_blocks': [
current_block
], # did not support multiple optimize blocks in layers
'sync_mode': True, # did not support async now in layers
'grad_to_block_id': [""]
})
def Send(endpoints, send_vars, dummy_output=None, sync=True):
"""
Send variables to the server side, and get vars from server
side when server have finished running server side program.
Args:
endpoints (str): comma seperated IP:PORT pairs in the order
of send_vars to send
send_vars (list): variables to send to server
sync (bool): whether to wait the request finish
"""
assert (type(send_vars) == list)
if dummy_output is None:
dummy_output = []
elif isinstance(dummy_output, Variable):
dummy_output = [dummy_output]
assert (type(dummy_output) == list)
epmap = endpoints.split(",")
endpoints = list(set(epmap))
helper = LayerHelper("Send", **locals())
rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
helper.append_op(
type="send",
inputs={"X": send_vars},
outputs={"Out": dummy_output},
attrs={
"endpoints": endpoints,
"epmap": epmap,
rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
})
if sync:
helper.append_op(
type="send_barrier",
inputs={"X": dummy_output},
outputs={"Out": []},
attrs={"endpoints": endpoints})
def Recv(endpoints, get_vars, dummy_input=None, sync=True):
"""
Receive variables from server side
Args:
endpoints (str): comma seperated IP:PORT pairs in the order
of send_vars to send
get_vars (list): vars to get from server after send completes.
sync (bool): whether to wait the request finish
Returns:
list: list of received variables
"""
assert (type(get_vars) == list)
if dummy_input is None:
dummy_input = []
elif isinstance(dummy_input, Variable):
dummy_input = [dummy_input]
assert (type(dummy_input) == list)
epmap = endpoints.split(",")
endpoints = list(set(epmap))
helper = LayerHelper("Recv", **locals())
helper.append_op(
type="recv",
inputs={"X": dummy_input},
outputs={"Out": get_vars},
attrs={"endpoints": endpoints,
"epmap": epmap})
if sync:
helper.append_op(
type="fetch_barrier",
outputs={"Out": get_vars},
attrs={"endpoints": endpoints})
return get_vars
def monkey_patch_reader_methods(reader):
def __get_reader__():
scope = global_scope()
var = scope.find_var(reader.name)
return var.get_reader()
def reset():
return __get_reader__().reset()
reader.reset = reset
reader.stop_gradient = True
reader.persistable = True
return reader
def _copy_reader_var_(block, var):
new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
new_var.desc.set_shapes(var.desc.shapes())
new_var.desc.set_dtypes(var.desc.dtypes())
new_var.desc.set_lod_levels(var.desc.lod_levels())
new_var.persistable = True
return new_var
def _copy_reader_create_op_(block, op):
input_param_names = op.input_names
new_input_map = {}
for param_name in input_param_names:
new_input_map[param_name] = []
arg_names = op.input(param_name)
for arg_name in arg_names:
new_input_map[param_name].append(block.var(arg_name))
output_param_names = op.output_names
new_output_map = {}
for param_name in output_param_names:
new_output_map[param_name] = []
arg_names = op.output(param_name)
for arg_name in arg_names:
new_output_map[param_name].append(block.var(arg_name))
new_op = block.append_op(
type=op.type,
inputs=new_input_map,
outputs=new_output_map,
attrs=op.all_attrs())
return new_op
def _py_reader(capacity,
shapes,
dtypes,
lod_levels=None,
name=None,
use_double_buffer=True,
feed_list=None):
if feed_list is not None:
if not isinstance(feed_list, list):
raise TypeError("feed_list should be a list of Variable"
" instead of " + str(type(feed_list)))
lod_levels = []
dtypes = []
shape_concat = []
ranks = []
shapes = []
for feed_data in feed_list:
dtypes.append(feed_data.dtype)
shape_concat.extend(feed_data.shape)
ranks.append(len(feed_data.shape))
shapes.append(feed_data.shape)
lod_levels.append(feed_data.lod_level)
else:
dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
shape_concat = []
ranks = []
for shape in shapes:
shape_concat.extend(shape)
ranks.append(len(shape))
if lod_levels is None:
lod_levels = [0] * len(shapes)
if name is None:
queue_name = unique_name('lod_tensor_blocking_queue')
reader_name = unique_name('create_py_reader')
double_buffer_name = unique_name('double_buffer')
else:
queue_name = "_".join([name, "queue"])
reader_name = "_".join([name, "reader"])
double_buffer_name = "_".join([name, "double_buffer"])
var = global_scope().var(queue_name)
feed_queue = core.init_lod_tensor_blocking_queue(var, capacity)
startup_blk = default_startup_program().current_block()
startup_var = startup_blk.create_var(name=reader_name)
startup_blk.append_op(
type='create_py_reader',
inputs={'blocking_queue': [queue_name]},
outputs={'Out': [startup_var]},
attrs={
'shape_concat': shape_concat,
'lod_levels': lod_levels,
'ranks': ranks
})
startup_var.desc.set_dtypes(dtypes)
startup_var.persistable = True
main_prog_var = _copy_reader_var_(default_main_program().current_block(),
startup_var)
reader = monkey_patch_reader_methods(main_prog_var)
if use_double_buffer:
double_buffer_reader = double_buffer(reader, name=double_buffer_name)
# we return a double buffer reader. However, the reset method comes from
# py_reader.
double_buffer_reader.reset = reader.reset
reader = double_buffer_reader
# monkey patch py_reader special methods
reader.queue = feed_queue
current_reset_method = reader.reset
reader.thread = None
reader.tensor_provider = None
reader.exited = False
def start_provide_thread(func):
def __provider_thread__():
try:
for tensors in func():
array = core.LoDTensorArray()
for item in tensors:
if not isinstance(item, core.LoDTensor):
tmp = core.LoDTensor()
tmp.set(item, core.CPUPlace())
item = tmp
array.append(item)
if reader.exited:
break
feed_queue.push(array)
if reader.exited:
break
feed_queue.close()
except Exception as ex:
feed_queue.close()
logging.warn('Your decorated reader has raised an exception!')
six.reraise(*sys.exc_info())
reader.thread = threading.Thread(target=__provider_thread__)
reader.thread.daemon = True
reader.thread.start()
def __set_tensor_provider__(func):
reader.tensor_provider = func
def __set_paddle_reader__(paddle_reader):
with program_guard(Program(), Program()):
actual_feed_list = feed_list
if actual_feed_list is None:
actual_feed_list = []
counter = 0
for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
name = str(counter)
actual_feed_list.append(
data(
name=name,
dtype=dtype,
shape=shape,
lod_level=lod_level))
counter += 1
data_names = [feed_data.name for feed_data in actual_feed_list]
feeder = DataFeeder(
feed_list=actual_feed_list, place=core.CPUPlace())
paddle_reader = feeder.decorate_reader(
paddle_reader, multi_devices=False)
def __tensor_provider__():
for slots in paddle_reader():
yield [slots[data_name] for data_name in data_names]
__set_tensor_provider__(__tensor_provider__)
def __reset__():
current_reset_method()
if reader.thread is not None and reader.tensor_provider is not None:
reader.exited = True
reader.thread.join()
reader.exited = False
def __start__():
start_provide_thread(reader.tensor_provider)
reader.reset = __reset__
reader.decorate_tensor_provider = __set_tensor_provider__
reader.decorate_paddle_reader = __set_paddle_reader__
reader.decorate_batch_generator = __set_tensor_provider__
reader.decorate_sample_list_generator = __set_paddle_reader__
reader.start = __start__
return reader
def py_reader(capacity,
shapes,
dtypes,
lod_levels=None,
name=None,
use_double_buffer=True):
"""
Create a Python reader for data feeding in Python
This layer returns a Reader Variable.
The Reader provides :code:`decorate_paddle_reader()` and
:code:`decorate_tensor_provider()` to set a Python generator as the data
source. More details :ref:`user_guide_use_py_reader_en` . When
:code:`Executor::Run()` is invoked in C++ side, the data from the generator
would be read automatically. Unlike :code:`DataFeeder.feed()`, the data
reading process and :code:`Executor::Run()` process can run in parallel
using :code:`py_reader`. The :code:`start()` method of the Reader should be
called when each pass begins, while the :code:`reset()` method should be
called when the pass ends and :code:`fluid.core.EOFException` raises.
Note that :code:`Program.clone()` method cannot clone :code:`py_reader`.
Args:
capacity(int): The buffer capacity maintained by :code:`py_reader`.
shapes(list|tuple): List of tuples which declaring data shapes.
dtypes(list|tuple): List of strs which declaring data type.
lod_levels(list|tuple): List of ints which declaring data lod_level.
name(basestring): The prefix Python queue name and Reader name. None will
be generated automatically.
use_double_buffer(bool): Whether use double buffer or not.
Returns:
Variable: A Reader from which we can get feeding data.
Examples:
1. The basic usage of :code:`py_reader` is as follows:
.. code-block:: python
import paddle
import paddle.fluid as fluid
import paddle.dataset.mnist as mnist
def network(image, label):
# user defined network, here a softmax regresssion example
predict = fluid.layers.fc(input=image, size=10, act='softmax')
return fluid.layers.cross_entropy(input=predict, label=label)
reader = fluid.layers.py_reader(capacity=64,
shapes=[(-1, 1, 28, 28), (-1, 1)],
dtypes=['float32', 'int64'])
reader.decorate_paddle_reader(
paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
buf_size=1000))
img, label = fluid.layers.read_file(reader)
loss = network(img, label)
fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
exe = fluid.ParallelExecutor(use_cuda=True)
for epoch_id in range(10):
reader.start()
try:
while True:
exe.run(fetch_list=[loss.name])
except fluid.core.EOFException:
reader.reset()
fluid.io.save_inference_model(dirname='./model',
feeded_var_names=[img.name, label.name],
target_vars=[loss],
executor=fluid.Executor(fluid.CUDAPlace(0)))
2. When training and testing are both performed, two different
:code:`py_reader` should be created with different names, e.g.:
.. code-block:: python
import paddle
import paddle.fluid as fluid
import paddle.dataset.mnist as mnist
def network(reader):
img, label = fluid.layers.read_file(reader)
# User defined network. Here a simple regression as example
predict = fluid.layers.fc(input=img, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=predict, label=label)
return fluid.layers.mean(loss)
# Create train_main_prog and train_startup_prog
train_main_prog = fluid.Program()
train_startup_prog = fluid.Program()
with fluid.program_guard(train_main_prog, train_startup_prog):
# Use fluid.unique_name.guard() to share parameters with test program
with fluid.unique_name.guard():
train_reader = fluid.layers.py_reader(capacity=64,
shapes=[(-1, 1, 28, 28),
(-1, 1)],
dtypes=['float32', 'int64'],
name='train_reader')
train_reader.decorate_paddle_reader(
paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
buf_size=500))
train_loss = network(train_reader) # some network definition
adam = fluid.optimizer.Adam(learning_rate=0.01)
adam.minimize(train_loss)
# Create test_main_prog and test_startup_prog
test_main_prog = fluid.Program()
test_startup_prog = fluid.Program()
with fluid.program_guard(test_main_prog, test_startup_prog):
# Use fluid.unique_name.guard() to share parameters with train program
with fluid.unique_name.guard():
test_reader = fluid.layers.py_reader(capacity=32,
shapes=[(-1, 1, 28, 28), (-1, 1)],
dtypes=['float32', 'int64'],
name='test_reader')
test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
test_loss = network(test_reader)
fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)
train_exe = fluid.ParallelExecutor(use_cuda=True,
loss_name=train_loss.name,
main_program=train_main_prog)
test_exe = fluid.ParallelExecutor(use_cuda=True,
loss_name=test_loss.name,
main_program=test_main_prog)
for epoch_id in range(10):
train_reader.start()
try:
while True:
train_exe.run(fetch_list=[train_loss.name])
except fluid.core.EOFException:
train_reader.reset()
test_reader.start()
try:
while True:
test_exe.run(fetch_list=[test_loss.name])
except fluid.core.EOFException:
test_reader.reset()
"""
return _py_reader(
capacity=capacity,
shapes=shapes,
dtypes=dtypes,
lod_levels=lod_levels,
name=name,
use_double_buffer=use_double_buffer)
def create_py_reader_by_data(capacity,
feed_list,
name=None,
use_double_buffer=True):
"""
Create a Python reader for data feeding in Python
This layer returns a Reader Variable.
Works much like py_reader except that it's input is feed_list
instead of shapes, dtypes and lod_levels
Args:
capacity(int): The buffer capacity maintained by :code:`py_reader`.
feed_list(list(Variable)): The data feed list.
name(basestring): The prefix Python queue name and Reader name. None will
be generated automatically.
use_double_buffer(bool): Whether use double buffer or not.
Returns:
Variable: A Reader from which we can get feeding data.
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
import paddle.dataset.mnist as mnist
import paddle.fluid.compiler as compiler
def network(img, label):
# User defined network. Here a simple regression as example
predict = fluid.layers.fc(input=img, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=predict, label=label)
return fluid.layers.mean(loss)
MEMORY_OPT = False
USE_CUDA = False
image = fluid.layers.data(name='image', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
reader = fluid.layers.create_py_reader_by_data(capacity=64,
feed_list=[image, label])
reader.decorate_paddle_reader(
paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
buf_size=500))
img, label = fluid.layers.read_file(reader)
loss = network(img, label) # some network definition
place = fluid.CUDAPlace(0) if USE_CUDA else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
build_strategy = fluid.BuildStrategy()
build_strategy.memory_optimize = True if MEMORY_OPT else False
compiled_prog = compiler.CompiledProgram(
fluid.default_main_program()).with_data_parallel(
loss_name=loss.name,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
for epoch_id in range(2):
reader.start()
try:
while True:
exe.run(compiled_prog, fetch_list=[loss.name])
except fluid.core.EOFException:
reader.reset()
"""
return _py_reader(
capacity=capacity,
shapes=None,
dtypes=None,
lod_levels=None,
name=name,
use_double_buffer=use_double_buffer,
feed_list=feed_list)
def open_files(filenames,
shapes,
lod_levels,
dtypes,
thread_num=None,
buffer_size=None,
pass_num=1,
is_test=None):
"""
Open files
This layer takes a list of files to read from and returns a Reader Variable.
Via the Reader Variable, we can get data from given files. All files must
have name suffixs to indicate their formats, e.g., '*.recordio'.
Args:
filenames(list): The list of file names.
shapes(list): List of tuples which declaring data shapes.
lod_levels(list): List of ints which declaring data lod_level.
dtypes(list): List of strs which declaring data type.
thread_num(None): The number of thread to read files.
Default: min(len(filenames), cpu_number).
buffer_size(None): The buffer size of reader. Default: 3 * thread_num
pass_num(int): Number of passes to run.
is_test(bool|None): Whether `open_files` used for testing or not. If it
is used for testing, the order of data generated is same as the file
order. Otherwise, it is not guaranteed the order of data is same
between every epoch. [Default: False].
Returns:
Variable: A Reader Variable via which we can get file data.
Examples:
.. code-block:: python
import paddle.fluid as fluid
reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
'./data2.recordio'],
shapes=[(3,224,224), (1,)],
lod_levels=[0, 0],
dtypes=['float32', 'int64'])
# Via the reader, we can use 'read_file' layer to get data:
image, label = fluid.layers.io.read_file(reader)
"""
if thread_num is None:
thread_num = min(len(filenames), multiprocessing.cpu_count())
else:
thread_num = int(thread_num)
if buffer_size is None:
buffer_size = 3 * thread_num
else:
buffer_size = int(buffer_size)
if isinstance(filenames, six.string_types):
filenames = [filenames]
dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
shape_concat = []
ranks = []
for shape in shapes:
shape_concat.extend(shape)
ranks.append(len(shape))
multi_file_reader_name = unique_name('multi_file_reader')
startup_blk = default_startup_program().current_block()
startup_reader = startup_blk.create_var(name=multi_file_reader_name)
attrs = {
'shape_concat': shape_concat,
'lod_levels': lod_levels,
'ranks': ranks,
'file_names': filenames,
'thread_num': thread_num,
'buffer_size': buffer_size
}
if is_test is not None:
attrs['is_test'] = is_test
startup_blk.append_op(
type='open_files', outputs={'Out': [startup_reader]}, attrs=attrs)
startup_reader.desc.set_dtypes(dtypes)
startup_reader.persistable = True
main_prog_reader = _copy_reader_var_(default_main_program().current_block(),
startup_reader)
if pass_num > 1:
main_prog_reader = multi_pass(
reader=main_prog_reader, pass_num=pass_num)
return monkey_patch_reader_methods(main_prog_reader)
def __create_shared_decorated_reader__(op_type, reader, attrs):
var_name = unique_name(op_type)
startup_blk = default_startup_program().current_block()
startup_var = startup_blk.create_var(name=var_name)
startop_op = startup_blk.append_op(
type=op_type,
inputs={'UnderlyingReader': reader},
outputs={'Out': [startup_var]},
attrs=attrs)
startup_var.persistable = True
main_prog_block = default_main_program().current_block()
main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
_copy_reader_create_op_(main_prog_block, startop_op)
return monkey_patch_reader_methods(main_prog_var)
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
new_reader_name = name if name is not None else unique_name(op_type)
main_blk = default_main_program().current_block()
new_reader = main_blk.create_var(name=new_reader_name)
main_blk.append_op(
type=op_type,
inputs={'UnderlyingReader': reader},
outputs={'Out': [new_reader]},
attrs=attrs)
return monkey_patch_reader_methods(new_reader)
def double_buffer(reader, place=None, name=None):
"""
Wrap a double buffer reader. The data will copy to target place with a
double buffer queue. If the target place is None, the place that executor
perform on will be used.
Args:
reader(Variable): the reader variable need to be wrapped.
place(Place): the place of target data. Default is the sample place of
executor perform.
name(str): Variable name. None if the user does not care.
Returns:
wrapped reader with double buffer.
Examples:
.. code-block:: python
import paddle.fluid as fluid
reader = fluid.layers.py_reader(capacity=64,
shapes=[(-1, 1, 28, 28), (-1, 1)],
dtypes=['float32', 'int64'],
use_double_buffer=False)
reader = fluid.layers.double_buffer(reader)
image, label = fluid.layers.read_file(reader)
"""
attrs = dict()
if place is not None:
attrs['place'] = str(place).upper()
return __create_unshared_decorated_reader__(
'create_double_buffer_reader', reader, attrs, name=name)
def read_file(reader):
"""
Execute the given reader and get data via it.
A reader is also a Variable. It can be a raw reader generated by
`fluid.layers.open_files()` or a decorated one generated by
`fluid.layers.double_buffer()` and so on.
Args:
reader(Variable): The reader to execute.
Returns:
Tuple[Variable]: Data read via the given reader.
Examples:
.. code-block:: python
import paddle.fluid as fluid
reader = fluid.layers.py_reader(capacity=64,
shapes=[(-1, 1, 28, 28), (-1, 1)],
dtypes=['float32', 'int64'])
image, label = fluid.layers.read_file(reader)
"""
helper = LayerHelper('read_file')
out = [
helper.create_variable_for_type_inference(
stop_gradient=True, dtype='float32')
for _ in range(len(reader.desc.shapes()))
]
helper.append_op(
type='read', inputs={'Reader': [reader]}, outputs={'Out': out})
if len(out) == 1:
return out[0]
else:
return out
@templatedoc()
def load(out, file_path, load_as_fp16=None):
"""
${comment}
>>> import paddle.fluid as fluid
>>> tmp_tensor = fluid.layers.create_tensor(dtype='float32')
>>> fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")
Args:
out(${out_type}): ${out_comment}.
file_path(${file_path_type}): ${file_path_comment}.
load_as_fp16(${load_as_fp16_type}): ${load_as_fp16_comment}.
Returns:
None
"""
helper = LayerHelper("load", **locals())
attrs = {"file_path": file_path}
if load_as_fp16 is not None:
attrs['load_as_fp16'] = load_as_fp16
helper.append_op(type="load", inputs={}, output={"Out": out}, attrs=attrs)