You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/distributed/table/tensor_table.h

201 lines
5.7 KiB

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <condition_variable> // NOLINT
#include <memory>
#include <mutex> // NOLINT
#include <set>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/distributed/common/utils.h"
#include "paddle/fluid/distributed/table/table.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/platform/device_context.h"
namespace paddle {
namespace distributed {
#define LEARNING_RATE_DECAY_COUNTER "@LR_DECAY_COUNTER@"
#define STEP_COUNTER "@PS_STEP_COUNTER@"
class TensorTable : public Table {
public:
TensorTable() {}
virtual ~TensorTable() {}
int32_t pull_dense(float *values, size_t num) override { return 0; }
int32_t push_dense(const float *values, size_t num) override { return 0; }
int32_t pull_sparse(float *values, const uint64_t *keys,
size_t num) override {
return 0;
}
int32_t push_sparse(const uint64_t *keys, const float *values,
size_t num) override {
return 0;
}
int32_t shrink() override { return 0; }
virtual void *get_shard(size_t shard_idx) { return 0; }
virtual int32_t initialize_shard() { return 0; };
virtual int32_t flush() { return 0; };
virtual int32_t load(const std::string &path, const std::string &param) {
return 0;
}
virtual int32_t save(const std::string &path, const std::string &param) {
return 0;
}
virtual void clear(){};
virtual int32_t initialize() override { return 0; };
virtual int32_t push_dense(const int64_t *values,
const int32_t trainer_id) override {
return 0;
};
virtual int32_t set_program_env(
framework::Scope *scope, platform::Place place,
const std::vector<framework::ProgramDesc> *sub_program) override;
protected:
framework::Executor *executor_;
framework::Scope *scope_;
platform::Place place_ = platform::CPUPlace();
const std::vector<framework::ProgramDesc> *sub_program_;
paddle::distributed::TensorAccessorParameter program_config_;
std::shared_ptr<framework::ExecutorPrepareContext> exec_context_ = nullptr;
};
class DenseTensorTable : public TensorTable {
public:
DenseTensorTable() {}
virtual ~DenseTensorTable() {}
int32_t pull_sparse(float *values, const uint64_t *keys,
size_t num) override {
return 0;
}
int32_t push_sparse(const uint64_t *keys, const float *values,
size_t num) override {
return 0;
}
int32_t shrink() override { return 0; }
virtual void *get_shard(size_t shard_idx) { return 0; }
virtual int32_t initialize_shard() { return 0; }
virtual int32_t flush() { return 0; }
virtual void clear() {}
// Todo: Support program Load & Save
virtual int32_t load(const std::string &path, const std::string &param) {
return 0;
}
virtual int32_t save(const std::string &path, const std::string &param) {
return 0;
}
// Todo: Support pull dense
int32_t pull_dense(float *values, size_t num) override { return 0; }
/*----------------------------------------------------------------------*/
virtual int32_t initialize() override { return 0; }
int32_t push_dense(const float *values, size_t num) override { return 0; }
int32_t push_dense(const int64_t *values, const int32_t trainer_id) {
return 0;
}
protected:
virtual int32_t _run_program(const float *values, size_t num,
const uint32_t trainer_id) {
return 0;
}
int startup_program_id_ = -1;
int main_program_id_ = -1;
std::string feed_var_name_ = "";
std::string fetch_var_name_ = "";
};
class GlobalStepTable : public DenseTensorTable {
public:
GlobalStepTable() {}
virtual ~GlobalStepTable() {}
int32_t pull_sparse(float *values, const uint64_t *keys,
size_t num) override {
return 0;
}
int32_t push_sparse(const uint64_t *keys, const float *values,
size_t num) override {
return 0;
}
int32_t shrink() override { return 0; }
virtual void *get_shard(size_t shard_idx) { return 0; }
virtual int32_t initialize_shard() { return 0; }
virtual int32_t flush() { return 0; }
virtual void clear() {}
virtual int32_t load(const std::string &path, const std::string &param) {
return 0;
}
virtual int32_t save(const std::string &path, const std::string &param) {
return 0;
}
int32_t pull_dense(float *values, size_t num) override { return 0; }
/*----------------------------------------------------------------------*/
int32_t initialize() override;
int32_t push_dense(const float *values, size_t num) override { return 0; }
int32_t push_dense(const int64_t *values, const int32_t trainer_id);
int32_t set_table_map(
std::unordered_map<uint32_t, std::shared_ptr<Table>> *table_map) override;
private:
virtual int32_t _run_program(const int64_t *values,
const uint32_t trainer_id);
private:
std::unordered_map<int, int64_t> decay_counters_;
int32_t trainers_;
};
} // namespace distributed
} // namespace paddle