You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							96 lines
						
					
					
						
							3.1 KiB
						
					
					
				
			
		
		
	
	
							96 lines
						
					
					
						
							3.1 KiB
						
					
					
				| /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include <cuda_runtime.h>
 | |
| #include <glog/logging.h>
 | |
| #include <gtest/gtest.h>
 | |
| #include <cstring>
 | |
| #include <numeric>
 | |
| #include "gflags/gflags.h"
 | |
| 
 | |
| #include "paddle/fluid/inference/tests/api/trt_test_helper.h"
 | |
| 
 | |
| namespace paddle_infer {
 | |
| 
 | |
| TEST(Predictor, use_gpu) {
 | |
|   LOG(INFO) << GetVersion();
 | |
|   UpdateDllFlag("conv_workspace_size_limit", "4000");
 | |
|   std::string model_dir = FLAGS_infer_model + "/model";
 | |
|   Config config;
 | |
|   config.SetModel(model_dir + "/model", model_dir + "/params");
 | |
|   config.EnableUseGpu(100, 0);
 | |
| 
 | |
|   auto predictor = CreatePredictor(config);
 | |
|   auto pred_clone = predictor->Clone();
 | |
| 
 | |
|   std::vector<int> in_shape = {1, 3, 318, 318};
 | |
|   int in_num = std::accumulate(in_shape.begin(), in_shape.end(), 1,
 | |
|                                [](int &a, int &b) { return a * b; });
 | |
| 
 | |
|   std::vector<float> input(in_num, 0);
 | |
| 
 | |
|   auto input_names = predictor->GetInputNames();
 | |
|   auto input_t = predictor->GetInputHandle(input_names[0]);
 | |
| 
 | |
|   input_t->Reshape(in_shape);
 | |
|   input_t->CopyFromCpu(input.data());
 | |
|   predictor->Run();
 | |
| 
 | |
|   auto output_names = predictor->GetOutputNames();
 | |
|   auto output_t = predictor->GetOutputHandle(output_names[0]);
 | |
|   std::vector<int> output_shape = output_t->shape();
 | |
|   int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
 | |
|                                 std::multiplies<int>());
 | |
| 
 | |
|   std::vector<float> out_data;
 | |
|   out_data.resize(out_num);
 | |
|   output_t->CopyToCpu(out_data.data());
 | |
|   predictor->ClearIntermediateTensor();
 | |
| }
 | |
| 
 | |
| TEST(PredictorPool, basic) {
 | |
|   LOG(INFO) << GetVersion();
 | |
|   UpdateDllFlag("conv_workspace_size_limit", "4000");
 | |
|   std::string model_dir = FLAGS_infer_model + "/model";
 | |
|   Config config;
 | |
|   config.SetModel(model_dir + "/model", model_dir + "/params");
 | |
|   config.EnableUseGpu(100, 0);
 | |
| 
 | |
|   services::PredictorPool pred_pool(config, 4);
 | |
|   auto pred = pred_pool.Retrive(2);
 | |
| 
 | |
|   std::vector<int> in_shape = {1, 3, 318, 318};
 | |
|   int in_num = std::accumulate(in_shape.begin(), in_shape.end(), 1,
 | |
|                                [](int &a, int &b) { return a * b; });
 | |
|   std::vector<float> input(in_num, 0);
 | |
| 
 | |
|   auto in_names = pred->GetInputNames();
 | |
|   auto input_t = pred->GetInputHandle(in_names[0]);
 | |
|   input_t->name();
 | |
|   input_t->Reshape(in_shape);
 | |
|   input_t->CopyFromCpu(input.data());
 | |
|   pred->Run();
 | |
|   auto out_names = pred->GetOutputNames();
 | |
|   auto output_t = pred->GetOutputHandle(out_names[0]);
 | |
|   auto out_type = output_t->type();
 | |
|   LOG(INFO) << GetNumBytesOfDataType(out_type);
 | |
|   if (out_type == DataType::FLOAT32) {
 | |
|     PlaceType place;
 | |
|     int size;
 | |
|     output_t->data<float>(&place, &size);
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace paddle_infer
 |