You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
216 lines
7.3 KiB
216 lines
7.3 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import copy
|
|
import six
|
|
from ..framework import Parameter, _in_dygraph_mode
|
|
from ..param_attr import ParamAttr
|
|
from .. import core
|
|
from six.moves import zip
|
|
from ..layer_helper_base import LayerHelperBase
|
|
|
|
|
|
class LayerObjectHelper(LayerHelperBase):
|
|
def __init__(self, name):
|
|
super(LayerObjectHelper, self).__init__(name, layer_type=name)
|
|
|
|
def append_op(self,
|
|
type=None,
|
|
inputs=None,
|
|
outputs=None,
|
|
attrs=None,
|
|
stop_gradient=None):
|
|
"""append an operator for this layer object.
|
|
|
|
Args:
|
|
type: operator type
|
|
inputs: input variable of the operator
|
|
dtype: data type of this parameter
|
|
is_bias: if this is a bias parameter
|
|
default_initializer: set the default initializer for this parameter
|
|
|
|
Returns created parameter Variable.
|
|
"""
|
|
return self.main_program.current_block().append_op(
|
|
type=type,
|
|
inputs=inputs,
|
|
outputs=outputs,
|
|
attrs=attrs,
|
|
stop_gradient=stop_gradient)
|
|
|
|
def _multiple_input(self, inputs_in):
|
|
inputs = inputs_in
|
|
ret = []
|
|
if isinstance(inputs, (list, tuple)):
|
|
for inp in inputs:
|
|
ret.append(self.to_variable(inp))
|
|
else:
|
|
ret.append(self.to_variable(inputs))
|
|
return ret
|
|
|
|
# TODO: make it public when we need it
|
|
def _input(self, inputs_in):
|
|
inputs = self._multiple_input(inputs_in)
|
|
if len(inputs) != 1:
|
|
raise "{0} layer only takes one input".format(self.layer_type)
|
|
return inputs[0]
|
|
|
|
def _multiple_param_attr(self, length, param_attr_in=None):
|
|
param_attr = param_attr_in
|
|
if isinstance(param_attr, ParamAttr):
|
|
param_attr = [param_attr]
|
|
|
|
if len(param_attr) != 1 and len(param_attr) != length:
|
|
raise ValueError("parameter number mismatch")
|
|
elif len(param_attr) == 1 and length != 1:
|
|
tmp = [None] * length
|
|
for i in six.moves.range(length):
|
|
tmp[i] = copy.deepcopy(param_attr[0])
|
|
param_attr = tmp
|
|
return param_attr
|
|
|
|
def iter_inputs_and_params(self, inputs_in, param_attr_in=None):
|
|
"""Access all inputs and params one by one
|
|
|
|
Args:
|
|
inputs_in: inputs to be iter
|
|
param_attr_in: param_attr to be iter
|
|
|
|
Returns input, param_attr
|
|
"""
|
|
inputs = inputs_in if (inputs_in is not None) else []
|
|
inputs = self._multiple_input(inputs)
|
|
param_attrs = self._multiple_param_attr(len(inputs), param_attr_in)
|
|
for ipt, param_attr in zip(inputs, param_attrs):
|
|
yield ipt, param_attr
|
|
|
|
def input_dtype(self, inputs_in):
|
|
"""Get input data type
|
|
|
|
Args:
|
|
inputs_in: inputs wanted know the data type
|
|
|
|
Returns dtype of the input
|
|
"""
|
|
inputs_in = inputs_in if (inputs_in is not None) else []
|
|
inputs = self._multiple_input(inputs_in)
|
|
dtype = None
|
|
for each in inputs:
|
|
if dtype is None:
|
|
dtype = each.dtype
|
|
elif dtype != each.dtype:
|
|
raise ValueError("Data Type mismatch: %d to %d" %
|
|
(dtype, each.dtype))
|
|
return dtype
|
|
|
|
def get_parameter(self, name):
|
|
"""Get parameter specifically
|
|
|
|
Args:
|
|
name: parameter's name
|
|
|
|
Returns target parameter
|
|
"""
|
|
param = self.main_program.global_block().var(name)
|
|
if not isinstance(param, Parameter):
|
|
raise ValueError("no Parameter name %s found" % name)
|
|
return param
|
|
|
|
def append_bias_op(self,
|
|
input_var,
|
|
dim_start=1,
|
|
dim_end=None,
|
|
bias_attr=None):
|
|
"""Append bias operator and return its output. If the user does not set bias_attr, append_bias_op will return input_var
|
|
|
|
Args:
|
|
input_var: the input variable. The len(input_var.shape) is
|
|
larger or equal than 2.
|
|
dim_start:
|
|
dim_end: the shape of the bias will be
|
|
bias_attr: the bias_attr of it
|
|
|
|
Return the Variable of after append bias op
|
|
"""
|
|
size = list(input_var.shape[dim_start:dim_end])
|
|
bias_attr = bias_attr
|
|
if not bias_attr:
|
|
return input_var
|
|
|
|
b = self.create_parameter(
|
|
attr=bias_attr, shape=size, dtype=input_var.dtype, is_bias=True)
|
|
tmp = self.create_variable_for_type_inference(dtype=input_var.dtype)
|
|
self.append_op(
|
|
type='elementwise_add',
|
|
inputs={'X': [input_var],
|
|
'Y': [b]},
|
|
outputs={'Out': [tmp]},
|
|
attrs={'axis': dim_start})
|
|
return tmp
|
|
|
|
# TODO: this should not be called anymore after all activation func move to Layers
|
|
def append_activation(self,
|
|
input_var,
|
|
act=None,
|
|
use_cudnn=None,
|
|
use_mkl_dnn=None):
|
|
"""Append activation
|
|
|
|
Args:
|
|
input_var: the input variable. The len(input_var.shape) is
|
|
larger or equal than 2.
|
|
act: activation type
|
|
use_mkl_dnn: if use mkldnn
|
|
use_cudnn: if use cudnn
|
|
|
|
Return the Variable of after append activation
|
|
"""
|
|
act = act
|
|
if act is None:
|
|
return input_var
|
|
if isinstance(act, six.string_types):
|
|
act = {'type': act}
|
|
else:
|
|
raise TypeError(str(act) + " should be unicode or str")
|
|
|
|
if (use_cudnn is not None) and use_cudnn:
|
|
act['use_cudnn'] = use_cudnn
|
|
if (use_mkl_dnn is not None) and use_mkl_dnn:
|
|
act['use_mkldnn'] = use_mkl_dnn
|
|
act_type = act.pop('type')
|
|
|
|
tmp = self.create_variable_for_type_inference(dtype=input_var.dtype)
|
|
self.append_op(
|
|
type=act_type,
|
|
inputs={"X": [input_var]},
|
|
outputs={"Out": [tmp]},
|
|
attrs=act)
|
|
return tmp
|
|
|
|
def is_instance(self, param, cls):
|
|
"""Check if the input parameter is instance of input class
|
|
|
|
Args:
|
|
param: parameter to be check
|
|
cls: class of the parameter
|
|
|
|
Return result of the check (True or False)
|
|
"""
|
|
param = param
|
|
if not isinstance(param, cls):
|
|
raise TypeError("The input {0} parameter of method {1} must be {2}",
|
|
param, self.layer_type, cls.__name__)
|