You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/dygraph/layer_object_helper.py

216 lines
7.3 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import copy
import six
from ..framework import Parameter, _in_dygraph_mode
from ..param_attr import ParamAttr
from .. import core
from six.moves import zip
from ..layer_helper_base import LayerHelperBase
class LayerObjectHelper(LayerHelperBase):
def __init__(self, name):
super(LayerObjectHelper, self).__init__(name, layer_type=name)
def append_op(self,
type=None,
inputs=None,
outputs=None,
attrs=None,
stop_gradient=None):
"""append an operator for this layer object.
Args:
type: operator type
inputs: input variable of the operator
dtype: data type of this parameter
is_bias: if this is a bias parameter
default_initializer: set the default initializer for this parameter
Returns created parameter Variable.
"""
return self.main_program.current_block().append_op(
type=type,
inputs=inputs,
outputs=outputs,
attrs=attrs,
stop_gradient=stop_gradient)
def _multiple_input(self, inputs_in):
inputs = inputs_in
ret = []
if isinstance(inputs, (list, tuple)):
for inp in inputs:
ret.append(self.to_variable(inp))
else:
ret.append(self.to_variable(inputs))
return ret
# TODO: make it public when we need it
def _input(self, inputs_in):
inputs = self._multiple_input(inputs_in)
if len(inputs) != 1:
raise "{0} layer only takes one input".format(self.layer_type)
return inputs[0]
def _multiple_param_attr(self, length, param_attr_in=None):
param_attr = param_attr_in
if isinstance(param_attr, ParamAttr):
param_attr = [param_attr]
if len(param_attr) != 1 and len(param_attr) != length:
raise ValueError("parameter number mismatch")
elif len(param_attr) == 1 and length != 1:
tmp = [None] * length
for i in six.moves.range(length):
tmp[i] = copy.deepcopy(param_attr[0])
param_attr = tmp
return param_attr
def iter_inputs_and_params(self, inputs_in, param_attr_in=None):
"""Access all inputs and params one by one
Args:
inputs_in: inputs to be iter
param_attr_in: param_attr to be iter
Returns input, param_attr
"""
inputs = inputs_in if (inputs_in is not None) else []
inputs = self._multiple_input(inputs)
param_attrs = self._multiple_param_attr(len(inputs), param_attr_in)
for ipt, param_attr in zip(inputs, param_attrs):
yield ipt, param_attr
def input_dtype(self, inputs_in):
"""Get input data type
Args:
inputs_in: inputs wanted know the data type
Returns dtype of the input
"""
inputs_in = inputs_in if (inputs_in is not None) else []
inputs = self._multiple_input(inputs_in)
dtype = None
for each in inputs:
if dtype is None:
dtype = each.dtype
elif dtype != each.dtype:
raise ValueError("Data Type mismatch: %d to %d" %
(dtype, each.dtype))
return dtype
def get_parameter(self, name):
"""Get parameter specifically
Args:
name: parameter's name
Returns target parameter
"""
param = self.main_program.global_block().var(name)
if not isinstance(param, Parameter):
raise ValueError("no Parameter name %s found" % name)
return param
def append_bias_op(self,
input_var,
dim_start=1,
dim_end=None,
bias_attr=None):
"""Append bias operator and return its output. If the user does not set bias_attr, append_bias_op will return input_var
Args:
input_var: the input variable. The len(input_var.shape) is
larger or equal than 2.
dim_start:
dim_end: the shape of the bias will be
bias_attr: the bias_attr of it
Return the Variable of after append bias op
"""
size = list(input_var.shape[dim_start:dim_end])
bias_attr = bias_attr
if not bias_attr:
return input_var
b = self.create_parameter(
attr=bias_attr, shape=size, dtype=input_var.dtype, is_bias=True)
tmp = self.create_variable_for_type_inference(dtype=input_var.dtype)
self.append_op(
type='elementwise_add',
inputs={'X': [input_var],
'Y': [b]},
outputs={'Out': [tmp]},
attrs={'axis': dim_start})
return tmp
# TODO: this should not be called anymore after all activation func move to Layers
def append_activation(self,
input_var,
act=None,
use_cudnn=None,
use_mkl_dnn=None):
"""Append activation
Args:
input_var: the input variable. The len(input_var.shape) is
larger or equal than 2.
act: activation type
use_mkl_dnn: if use mkldnn
use_cudnn: if use cudnn
Return the Variable of after append activation
"""
act = act
if act is None:
return input_var
if isinstance(act, six.string_types):
act = {'type': act}
else:
raise TypeError(str(act) + " should be unicode or str")
if (use_cudnn is not None) and use_cudnn:
act['use_cudnn'] = use_cudnn
if (use_mkl_dnn is not None) and use_mkl_dnn:
act['use_mkldnn'] = use_mkl_dnn
act_type = act.pop('type')
tmp = self.create_variable_for_type_inference(dtype=input_var.dtype)
self.append_op(
type=act_type,
inputs={"X": [input_var]},
outputs={"Out": [tmp]},
attrs=act)
return tmp
def is_instance(self, param, cls):
"""Check if the input parameter is instance of input class
Args:
param: parameter to be check
cls: class of the parameter
Return result of the check (True or False)
"""
param = param
if not isinstance(param, cls):
raise TypeError("The input {0} parameter of method {1} must be {2}",
param, self.layer_type, cls.__name__)