You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
5.9 KiB
166 lines
5.9 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import contextlib
|
|
import numpy
|
|
import unittest
|
|
import math
|
|
import sys
|
|
import os
|
|
|
|
|
|
def train(use_cuda, save_dirname, is_local):
|
|
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
|
|
|
|
y_predict = fluid.layers.fc(input=x, size=1, act=None)
|
|
|
|
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
|
|
|
|
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
BATCH_SIZE = 20
|
|
|
|
train_reader = paddle.batch(
|
|
paddle.reader.shuffle(
|
|
paddle.dataset.uci_housing.train(), buf_size=500),
|
|
batch_size=BATCH_SIZE)
|
|
|
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
|
|
def train_loop(main_program):
|
|
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
PASS_NUM = 100
|
|
for pass_id in range(PASS_NUM):
|
|
for data in train_reader():
|
|
avg_loss_value, = exe.run(main_program,
|
|
feed=feeder.feed(data),
|
|
fetch_list=[avg_cost])
|
|
print(avg_loss_value)
|
|
if avg_loss_value[0] < 10.0:
|
|
if save_dirname is not None:
|
|
fluid.io.save_inference_model(save_dirname, ['x'],
|
|
[y_predict], exe)
|
|
return
|
|
if math.isnan(float(avg_loss_value)):
|
|
sys.exit("got NaN loss, training failed.")
|
|
raise AssertionError("Fit a line cost is too large, {0:2.2}".format(
|
|
avg_loss_value[0]))
|
|
|
|
if is_local:
|
|
train_loop(fluid.default_main_program())
|
|
else:
|
|
port = os.getenv("PADDLE_PSERVER_PORT", "6174")
|
|
pserver_ips = os.getenv("PADDLE_PSERVER_IPS") # ip,ip...
|
|
eplist = []
|
|
for ip in pserver_ips.split(","):
|
|
eplist.append(':'.join([ip, port]))
|
|
pserver_endpoints = ",".join(eplist) # ip:port,ip:port...
|
|
trainers = int(os.getenv("PADDLE_TRAINERS"))
|
|
current_endpoint = os.getenv("POD_IP") + ":" + port
|
|
trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
|
|
training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
|
|
t = fluid.DistributeTranspiler()
|
|
t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
|
|
if training_role == "PSERVER":
|
|
pserver_prog = t.get_pserver_program(current_endpoint)
|
|
pserver_startup = t.get_startup_program(current_endpoint,
|
|
pserver_prog)
|
|
exe.run(pserver_startup)
|
|
exe.run(pserver_prog)
|
|
elif training_role == "TRAINER":
|
|
train_loop(t.get_trainer_program())
|
|
|
|
|
|
def infer(use_cuda, save_dirname=None):
|
|
if save_dirname is None:
|
|
return
|
|
|
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
|
|
inference_scope = fluid.core.Scope()
|
|
with fluid.scope_guard(inference_scope):
|
|
# Use fluid.io.load_inference_model to obtain the inference program desc,
|
|
# the feed_target_names (the names of variables that will be feeded
|
|
# data using feed operators), and the fetch_targets (variables that
|
|
# we want to obtain data from using fetch operators).
|
|
[inference_program, feed_target_names,
|
|
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
|
|
|
|
# The input's dimension should be 2-D and the second dim is 13
|
|
# The input data should be >= 0
|
|
batch_size = 10
|
|
|
|
test_reader = paddle.batch(
|
|
paddle.dataset.uci_housing.test(), batch_size=batch_size)
|
|
|
|
test_data = next(test_reader())
|
|
test_feat = numpy.array(
|
|
[data[0] for data in test_data]).astype("float32")
|
|
test_label = numpy.array(
|
|
[data[1] for data in test_data]).astype("float32")
|
|
|
|
assert feed_target_names[0] == 'x'
|
|
results = exe.run(inference_program,
|
|
feed={feed_target_names[0]: numpy.array(test_feat)},
|
|
fetch_list=fetch_targets)
|
|
print("infer shape: ", results[0].shape)
|
|
print("infer results: ", results[0])
|
|
print("ground truth: ", test_label)
|
|
|
|
|
|
def main(use_cuda, is_local=True):
|
|
if use_cuda and not fluid.core.is_compiled_with_cuda():
|
|
return
|
|
|
|
# Directory for saving the trained model
|
|
save_dirname = "fit_a_line.inference.model"
|
|
|
|
train(use_cuda, save_dirname, is_local)
|
|
infer(use_cuda, save_dirname)
|
|
|
|
|
|
class TestFitALine(unittest.TestCase):
|
|
def test_cpu(self):
|
|
with self.program_scope_guard():
|
|
main(use_cuda=False)
|
|
|
|
def test_cuda(self):
|
|
with self.program_scope_guard():
|
|
main(use_cuda=True)
|
|
|
|
@contextlib.contextmanager
|
|
def program_scope_guard(self):
|
|
prog = fluid.Program()
|
|
startup_prog = fluid.Program()
|
|
scope = fluid.core.Scope()
|
|
with fluid.scope_guard(scope):
|
|
with fluid.program_guard(prog, startup_prog):
|
|
yield
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|