You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
189 lines
5.9 KiB
189 lines
5.9 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestAdamaxOp1(OpTest):
|
|
def setUp(self):
|
|
'''Test Adamax Operator with supplied attributes
|
|
'''
|
|
self.op_type = "adamax"
|
|
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
moment = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
# The infinity norm is positive
|
|
inf_norm = np.random.random((102, 105)).astype("float32")
|
|
|
|
learning_rate = 0.002
|
|
beta1 = 0.78
|
|
beta2 = 0.899
|
|
epsilon = 1e-5
|
|
beta1_pow = beta1**10
|
|
|
|
self.inputs = {
|
|
'Param': param,
|
|
'Grad': grad,
|
|
'Moment': moment,
|
|
'InfNorm': inf_norm,
|
|
'LearningRate': np.array([learning_rate]).astype("float32"),
|
|
'Beta1Pow': np.array([beta1_pow]).astype("float32")
|
|
}
|
|
|
|
self.attrs = {'beta1': beta1, 'beta2': beta2, 'epsilon': epsilon}
|
|
|
|
param_out, moment_out, inf_norm_out = adamax_step(self.inputs,
|
|
self.attrs)
|
|
|
|
self.outputs = {
|
|
'ParamOut': param_out,
|
|
'MomentOut': moment_out,
|
|
'InfNormOut': inf_norm_out
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestAdamaxOp2(OpTest):
|
|
'''Test Adamax Operator with default attributes
|
|
'''
|
|
|
|
def setUp(self):
|
|
self.op_type = "adamax"
|
|
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
moment = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
# The infinity norm is positive
|
|
inf_norm = np.random.random((102, 105)).astype("float32")
|
|
|
|
learning_rate = 0.002
|
|
beta1 = 0.9
|
|
beta2 = 0.999
|
|
epsilon = 1e-8
|
|
beta1_pow = beta1**8
|
|
|
|
self.inputs = {
|
|
'Param': param,
|
|
'Grad': grad,
|
|
'Moment': moment,
|
|
'InfNorm': inf_norm,
|
|
'LearningRate': np.array([learning_rate]).astype("float32"),
|
|
'Beta1Pow': np.array([beta1_pow]).astype("float32")
|
|
}
|
|
|
|
attrs = {'beta1': beta1, 'beta2': beta2, 'epsilon': epsilon}
|
|
param_out, moment_out, inf_norm_out = adamax_step(self.inputs, attrs)
|
|
|
|
self.outputs = {
|
|
'ParamOut': param_out,
|
|
'MomentOut': moment_out,
|
|
'InfNormOut': inf_norm_out
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestAdamaxOpMultipleSteps(OpTest):
|
|
def setUp(self):
|
|
'''Test Adamax Operator with supplied attributes
|
|
'''
|
|
self.op_type = "adamax"
|
|
self.num_steps = 10
|
|
|
|
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
moment = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
# The infinity norm is positive
|
|
inf_norm = np.random.random((102, 105)).astype("float32")
|
|
|
|
learning_rate = 0.002
|
|
beta1 = 0.8
|
|
beta2 = 0.99
|
|
epsilon = 1e-5
|
|
beta1_pow = 1
|
|
|
|
self.inputs = {
|
|
'Param': param,
|
|
'Grad': grad,
|
|
'Moment': moment,
|
|
'InfNorm': inf_norm,
|
|
'LearningRate': np.array([learning_rate]).astype("float32"),
|
|
'Beta1Pow': np.array([beta1_pow]).astype("float32")
|
|
}
|
|
|
|
self.attrs = {'beta1': beta1, 'beta2': beta2, 'epsilon': epsilon}
|
|
|
|
def test_check_output(self):
|
|
for _ in range(self.num_steps):
|
|
param_out, moment_out, inf_norm_out = adamax_step(self.inputs,
|
|
self.attrs)
|
|
|
|
self.outputs = {
|
|
'ParamOut': param_out,
|
|
'MomentOut': moment_out,
|
|
'InfNormOut': inf_norm_out
|
|
}
|
|
|
|
# Verify output for this step
|
|
self.check_output()
|
|
|
|
# Output of this step becomes input for next step
|
|
self.inputs['Param'] = param_out
|
|
self.inputs['Moment'] = moment_out
|
|
self.inputs['InfNorm'] = inf_norm_out
|
|
|
|
# Update Beta1 Power accumulator for next step
|
|
self.inputs['Beta1Pow'] *= self.attrs['beta1']
|
|
|
|
# Randomize gradient for next step
|
|
self.inputs['Grad'] = np.random.uniform(
|
|
-1, 1, (102, 105)).astype("float32")
|
|
|
|
|
|
def adamax_step(inputs, attributes):
|
|
'''
|
|
Simulate one step of the adamax optimizer
|
|
:param inputs: dict of inputs
|
|
:param attributes: dict of attributes
|
|
:return tuple: tuple of output param, moment, inf_norm and
|
|
beta1 power accumulator
|
|
'''
|
|
param = inputs['Param']
|
|
grad = inputs['Grad']
|
|
moment = inputs['Moment']
|
|
inf_norm = inputs['InfNorm']
|
|
lr = inputs['LearningRate']
|
|
beta1_pow = inputs['Beta1Pow']
|
|
|
|
beta1 = attributes['beta1']
|
|
beta2 = attributes['beta2']
|
|
epsilon = attributes['epsilon']
|
|
|
|
moment_out = beta1 * moment + (1 - beta1) * grad
|
|
inf_norm_out = np.maximum(beta2 * inf_norm + epsilon, np.abs(grad))
|
|
lr_t = (lr / (1 - beta1_pow))
|
|
param_out = param - lr_t * np.divide(moment_out, inf_norm_out)
|
|
|
|
return param_out, moment_out, inf_norm_out
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|