You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_adamax_op.py

189 lines
5.9 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
class TestAdamaxOp1(OpTest):
def setUp(self):
'''Test Adamax Operator with supplied attributes
'''
self.op_type = "adamax"
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
moment = np.random.uniform(-1, 1, (102, 105)).astype("float32")
# The infinity norm is positive
inf_norm = np.random.random((102, 105)).astype("float32")
learning_rate = 0.002
beta1 = 0.78
beta2 = 0.899
epsilon = 1e-5
beta1_pow = beta1**10
self.inputs = {
'Param': param,
'Grad': grad,
'Moment': moment,
'InfNorm': inf_norm,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32")
}
self.attrs = {'beta1': beta1, 'beta2': beta2, 'epsilon': epsilon}
param_out, moment_out, inf_norm_out = adamax_step(self.inputs,
self.attrs)
self.outputs = {
'ParamOut': param_out,
'MomentOut': moment_out,
'InfNormOut': inf_norm_out
}
def test_check_output(self):
self.check_output()
class TestAdamaxOp2(OpTest):
'''Test Adamax Operator with default attributes
'''
def setUp(self):
self.op_type = "adamax"
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
moment = np.random.uniform(-1, 1, (102, 105)).astype("float32")
# The infinity norm is positive
inf_norm = np.random.random((102, 105)).astype("float32")
learning_rate = 0.002
beta1 = 0.9
beta2 = 0.999
epsilon = 1e-8
beta1_pow = beta1**8
self.inputs = {
'Param': param,
'Grad': grad,
'Moment': moment,
'InfNorm': inf_norm,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32")
}
attrs = {'beta1': beta1, 'beta2': beta2, 'epsilon': epsilon}
param_out, moment_out, inf_norm_out = adamax_step(self.inputs, attrs)
self.outputs = {
'ParamOut': param_out,
'MomentOut': moment_out,
'InfNormOut': inf_norm_out
}
def test_check_output(self):
self.check_output()
class TestAdamaxOpMultipleSteps(OpTest):
def setUp(self):
'''Test Adamax Operator with supplied attributes
'''
self.op_type = "adamax"
self.num_steps = 10
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
moment = np.random.uniform(-1, 1, (102, 105)).astype("float32")
# The infinity norm is positive
inf_norm = np.random.random((102, 105)).astype("float32")
learning_rate = 0.002
beta1 = 0.8
beta2 = 0.99
epsilon = 1e-5
beta1_pow = 1
self.inputs = {
'Param': param,
'Grad': grad,
'Moment': moment,
'InfNorm': inf_norm,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32")
}
self.attrs = {'beta1': beta1, 'beta2': beta2, 'epsilon': epsilon}
def test_check_output(self):
for _ in range(self.num_steps):
param_out, moment_out, inf_norm_out = adamax_step(self.inputs,
self.attrs)
self.outputs = {
'ParamOut': param_out,
'MomentOut': moment_out,
'InfNormOut': inf_norm_out
}
# Verify output for this step
self.check_output()
# Output of this step becomes input for next step
self.inputs['Param'] = param_out
self.inputs['Moment'] = moment_out
self.inputs['InfNorm'] = inf_norm_out
# Update Beta1 Power accumulator for next step
self.inputs['Beta1Pow'] *= self.attrs['beta1']
# Randomize gradient for next step
self.inputs['Grad'] = np.random.uniform(
-1, 1, (102, 105)).astype("float32")
def adamax_step(inputs, attributes):
'''
Simulate one step of the adamax optimizer
:param inputs: dict of inputs
:param attributes: dict of attributes
:return tuple: tuple of output param, moment, inf_norm and
beta1 power accumulator
'''
param = inputs['Param']
grad = inputs['Grad']
moment = inputs['Moment']
inf_norm = inputs['InfNorm']
lr = inputs['LearningRate']
beta1_pow = inputs['Beta1Pow']
beta1 = attributes['beta1']
beta2 = attributes['beta2']
epsilon = attributes['epsilon']
moment_out = beta1 * moment + (1 - beta1) * grad
inf_norm_out = np.maximum(beta2 * inf_norm + epsilon, np.abs(grad))
lr_t = (lr / (1 - beta1_pow))
param_out = param - lr_t * np.divide(moment_out, inf_norm_out)
return param_out, moment_out, inf_norm_out
if __name__ == "__main__":
unittest.main()