You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/trainer_desc.py

96 lines
3.8 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.fluid.proto import trainer_desc_pb2
from distributed import ps_pb2 as ps_pb2
from device_worker import DeviceWorkerFactory
from google.protobuf import text_format
__all__ = ['TrainerDesc', 'MultiTrainer', 'DistMultiTrainer']
# can be initialized from train_desc,
class TrainerDesc(object):
def __init__(self):
'''
self.proto_desc = data_feed_pb2.DataFeedDesc()
with open(proto_file, 'r') as f:
text_format.Parse(f.read(), self.proto_desc)
'''
self.proto_desc = trainer_desc_pb2.TrainerDesc()
import multiprocessing as mp
# set default thread num == cpu count
self.proto_desc.thread_num = mp.cpu_count()
def set_thread(self, thread_num):
self.proto_desc.thread_num = thread_num
def set_filelist(self, filelist):
self.proto_desc.filelist.extend(filelist)
self.proto_desc.thread_num = min(
len(filelist), self.proto_desc.thread_num)
def set_data_feed(self, datafeed):
self.proto_desc.data_desc.CopyFrom(datafeed.proto_desc)
def gen_trainer_desc(self, dataset=None, fleet_desc=None, worker=None):
pass
def _desc(self):
return text_format.MessageToString(self.proto_desc)
class MultiTrainer(TrainerDesc):
def __init__(self, dataset=None, worker="Hogwild"):
super(MultiTrainer, self).__init__()
if worker == "Hogwild":
self.proto_desc.device_worker_name = worker + "Worker"
self.proto_desc.class_name = "MultiTrainer"
else:
raise ValueError('ValueError: DeviceWorker %s '
'is not supported in MultiTrainer' % worker)
def gen_trainer_desc(self, dataset=None, fleet_desc=None, worker="Hogwild"):
super(MultiTrainer, self).gen_trainer_desc(fleet_desc, worker)
class DistMultiTrainer(TrainerDesc):
def __init__(self):
super(DistMultiTrainer, self).__init__()
pass
def gen_trainer_desc(self, dataset=None, fleet_desc=None,
worker="Downpour"):
super(DistMultiTrainer, self).gen_trainer_desc(fleet_desc, worker)
self.proto_desc.class_name = "DistMultiTrainer"
self.proto_desc.data_desc.CopyFrom(dataset.proto_desc)
worker_builder = DeviceWorkerFactory()
device_worker = worker_builder.create_device_worker("Downpour")
device_worker.gen_worker_desc(self.proto_desc, fleet_desc)
def set_program_config(self, fleet_desc, program_id):
for program_config in fleet_desc.trainer_param.program_config:
if program_config.program_id == program_id:
pc = self.proto_desc.downpour_param.program_config.add()
pc.program_id = program_config.program_id
for i in program_config.push_sparse_table_id:
pc.push_sparse_table_id.extend([i])
for i in program_config.push_dense_table_id:
pc.push_dense_table_id.extend([i])
for i in program_config.pull_sparse_table_id:
pc.pull_sparse_table_id.extend([i])
for i in program_config.pull_dense_table_id:
pc.pull_dense_table_id.extend([i])
break