You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
306 lines
10 KiB
306 lines
10 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "DepthwiseConvOp.h"
|
|
#include "ConvOp.h"
|
|
|
|
namespace paddle {
|
|
|
|
template <class T>
|
|
class DepthwiseConvFunctor<DEVICE_TYPE_CPU, T> {
|
|
public:
|
|
void operator()(const T* inputData,
|
|
const T* filterData,
|
|
int batchSize,
|
|
int outputChannels,
|
|
int outputHeight,
|
|
int outputWidth,
|
|
int inputChannels,
|
|
int inputHeight,
|
|
int inputWidth,
|
|
int filterMultiplier,
|
|
int filterHeight,
|
|
int filterWidth,
|
|
int strideH,
|
|
int strideW,
|
|
int paddingH,
|
|
int paddingW,
|
|
T* outputData) {
|
|
// TODO(zhaolong) : cpu implementation of depthwise convolution
|
|
}
|
|
};
|
|
|
|
template <class T>
|
|
class DepthwiseConvGradInputFunctor<DEVICE_TYPE_CPU, T> {
|
|
public:
|
|
void operator()(const T* outputGrad,
|
|
const T* filterData,
|
|
int batchSize,
|
|
int outputChannels,
|
|
int outputHeight,
|
|
int outputWidth,
|
|
int inputChannels,
|
|
int inputHeight,
|
|
int inputWidth,
|
|
int filterMultiplier,
|
|
int filterHeight,
|
|
int filterWidth,
|
|
int strideH,
|
|
int strideW,
|
|
int paddingH,
|
|
int paddingW,
|
|
T* inputGrad) {}
|
|
// TODO(zhaolong) : cpu implementation of depthwise convolution
|
|
};
|
|
|
|
template <class T>
|
|
class DepthwiseConvGradFilterFunctor<DEVICE_TYPE_CPU, T> {
|
|
public:
|
|
void operator()(const T* outputGrad,
|
|
const T* inputData,
|
|
int batchSize,
|
|
int outputChannels,
|
|
int outputHeight,
|
|
int outputWidth,
|
|
int inputChannels,
|
|
int inputHeight,
|
|
int inputWidth,
|
|
int filterMultiplier,
|
|
int filterHeight,
|
|
int filterWidth,
|
|
int strideH,
|
|
int strideW,
|
|
int paddingH,
|
|
int paddingW,
|
|
T* colData,
|
|
T* filterGrad) {}
|
|
// TODO(zhaolong) : cpu implementation of depthwise convolution
|
|
};
|
|
|
|
/*
|
|
* \brief Forward calculation of depthwise convolution.
|
|
*/
|
|
template <DeviceType Device>
|
|
class DepthwiseConvFunction : public ConvFunctionBase {
|
|
public:
|
|
void init(const FuncConfig& config) override {
|
|
ConvFunctionBase::init(config);
|
|
}
|
|
|
|
void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
const TensorShape& input = inputs[0].shape();
|
|
const TensorShape& filter = inputs[1].shape();
|
|
const TensorShape& output = outputs[0].shape();
|
|
checkShape(input, filter, output);
|
|
}
|
|
|
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
CHECK_EQ(numInputs_, inputs.size());
|
|
CHECK_EQ(numOutputs_, outputs.size());
|
|
check(inputs, outputs);
|
|
|
|
const TensorShape& input = inputs[0].shape();
|
|
const TensorShape& filter = inputs[1].shape();
|
|
const TensorShape& output = outputs[0].shape();
|
|
|
|
size_t batchSize = input[0];
|
|
size_t inputChannels = input[1];
|
|
size_t inputHeight = input[2];
|
|
size_t inputWidth = input[3];
|
|
size_t filterHeight = getFilterHeight(filter);
|
|
size_t filterWidth = getFilterWidth(filter);
|
|
size_t outputChannels = output[1];
|
|
size_t outputHeight = output[2];
|
|
size_t outputWidth = output[3];
|
|
size_t filterMultiplier = outputChannels / groups_;
|
|
CHECK_EQ(inputChannels, groups_);
|
|
|
|
real* inputData = inputs[0].data<real>();
|
|
real* filterData = inputs[1].data<real>();
|
|
real* outputData = outputs[0].data<real>();
|
|
|
|
DepthwiseConvFunctor<Device, real> depthwiseConv;
|
|
depthwiseConv(inputData,
|
|
filterData,
|
|
batchSize,
|
|
outputChannels,
|
|
outputHeight,
|
|
outputWidth,
|
|
inputChannels,
|
|
inputHeight,
|
|
inputWidth,
|
|
filterMultiplier,
|
|
filterHeight,
|
|
filterWidth,
|
|
strideH(),
|
|
strideW(),
|
|
paddingH(),
|
|
paddingW(),
|
|
outputData);
|
|
}
|
|
};
|
|
|
|
/*
|
|
* \brief Backward input calculation of depthwise convolution.
|
|
*/
|
|
template <DeviceType Device>
|
|
class DepthwiseConvGradInputFunction : public ConvFunctionBase {
|
|
public:
|
|
void init(const FuncConfig& config) override {
|
|
ConvFunctionBase::init(config);
|
|
}
|
|
|
|
void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
const TensorShape& output = inputs[0].shape();
|
|
const TensorShape& filter = inputs[1].shape();
|
|
const TensorShape& input = outputs[0].shape();
|
|
checkShape(input, filter, output);
|
|
}
|
|
|
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
CHECK_EQ(numInputs_, inputs.size());
|
|
CHECK_EQ(numOutputs_, outputs.size());
|
|
CHECK_EQ(outputs[0].getArgType(), ADD_TO);
|
|
check(inputs, outputs);
|
|
CHECK_EQ(outputs[0].getArgType(), ADD_TO);
|
|
const TensorShape& output = inputs[0].shape();
|
|
const TensorShape& filter = inputs[1].shape();
|
|
const TensorShape& input = outputs[0].shape();
|
|
|
|
size_t batchSize = input[0];
|
|
size_t inputChannels = input[1];
|
|
size_t inputHeight = input[2];
|
|
size_t inputWidth = input[3];
|
|
size_t filterHeight = getFilterHeight(filter);
|
|
size_t filterWidth = getFilterWidth(filter);
|
|
size_t outputChannels = output[1];
|
|
size_t outputHeight = output[2];
|
|
size_t outputWidth = output[3];
|
|
size_t filterMultiplier = outputChannels / groups_;
|
|
CHECK_EQ(inputChannels, groups_);
|
|
|
|
real* outputGrad = inputs[0].data<real>();
|
|
real* filterData = inputs[1].data<real>();
|
|
real* inputGrad = outputs[0].data<real>();
|
|
|
|
DepthwiseConvGradInputFunctor<Device, real> depthwiseConvGradInput;
|
|
depthwiseConvGradInput(outputGrad,
|
|
filterData,
|
|
batchSize,
|
|
outputChannels,
|
|
outputHeight,
|
|
outputWidth,
|
|
inputChannels,
|
|
inputHeight,
|
|
inputWidth,
|
|
filterMultiplier,
|
|
filterHeight,
|
|
filterWidth,
|
|
strideH(),
|
|
strideW(),
|
|
paddingH(),
|
|
paddingW(),
|
|
inputGrad);
|
|
}
|
|
};
|
|
|
|
/*
|
|
* \brief Backward filter calculation of depthwise convolution.
|
|
*/
|
|
template <DeviceType Device>
|
|
class DepthwiseConvGradFilterFunction : public ConvFunctionBase {
|
|
public:
|
|
void init(const FuncConfig& config) override {
|
|
ConvFunctionBase::init(config);
|
|
}
|
|
|
|
void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
const TensorShape& output = inputs[0].shape();
|
|
const TensorShape& input = inputs[1].shape();
|
|
const TensorShape& filter = outputs[0].shape();
|
|
checkShape(input, filter, output);
|
|
}
|
|
|
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
CHECK_EQ(numInputs_, inputs.size());
|
|
CHECK_EQ(numOutputs_, outputs.size());
|
|
CHECK_EQ(outputs[0].getArgType(), ADD_TO);
|
|
check(inputs, outputs);
|
|
const TensorShape& output = inputs[0].shape();
|
|
const TensorShape& input = inputs[1].shape();
|
|
const TensorShape& filter = outputs[0].shape();
|
|
|
|
size_t batchSize = input[0];
|
|
size_t inputChannels = input[1];
|
|
size_t inputHeight = input[2];
|
|
size_t inputWidth = input[3];
|
|
size_t filterHeight = getFilterHeight(filter);
|
|
size_t filterWidth = getFilterWidth(filter);
|
|
size_t outputChannels = output[1];
|
|
size_t outputHeight = output[2];
|
|
size_t outputWidth = output[3];
|
|
size_t filterMultiplier = outputChannels / groups_;
|
|
CHECK_EQ(inputChannels, groups_);
|
|
|
|
real* outputGrad = inputs[0].data<real>();
|
|
real* inputData = inputs[1].data<real>();
|
|
real* filterGrad = outputs[0].data<real>();
|
|
|
|
int size = outputChannels * filterHeight * filterWidth * outputHeight *
|
|
outputWidth;
|
|
resizeBuffer<Device>(size);
|
|
real* colData = reinterpret_cast<real*>(memory_->getBuf());
|
|
|
|
DepthwiseConvGradFilterFunctor<Device, real> depthwiseConvGradFilter;
|
|
|
|
depthwiseConvGradFilter(outputGrad,
|
|
inputData,
|
|
batchSize,
|
|
outputChannels,
|
|
outputHeight,
|
|
outputWidth,
|
|
inputChannels,
|
|
inputHeight,
|
|
inputWidth,
|
|
filterMultiplier,
|
|
filterHeight,
|
|
filterWidth,
|
|
strideH(),
|
|
strideW(),
|
|
paddingH(),
|
|
paddingW(),
|
|
colData,
|
|
filterGrad);
|
|
}
|
|
};
|
|
|
|
REGISTER_TYPED_FUNC(DepthwiseConv, CPU, DepthwiseConvFunction);
|
|
REGISTER_TYPED_FUNC(DepthwiseConvGradInput,
|
|
CPU,
|
|
DepthwiseConvGradInputFunction);
|
|
REGISTER_TYPED_FUNC(DepthwiseConvGradFilter,
|
|
CPU,
|
|
DepthwiseConvGradFilterFunction);
|
|
#ifdef PADDLE_WITH_CUDA
|
|
REGISTER_TYPED_FUNC(DepthwiseConv, GPU, DepthwiseConvFunction);
|
|
REGISTER_TYPED_FUNC(DepthwiseConvGradInput,
|
|
GPU,
|
|
DepthwiseConvGradInputFunction);
|
|
REGISTER_TYPED_FUNC(DepthwiseConvGradFilter,
|
|
GPU,
|
|
DepthwiseConvGradFilterFunction);
|
|
#endif
|
|
|
|
} // namespace paddle
|