You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
142 lines
5.0 KiB
142 lines
5.0 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "ConvOp.h"
|
|
|
|
namespace paddle {
|
|
|
|
/*
|
|
* The three arguments are stored in memory in row major order.
|
|
* inputData = [batchSize, inputChannels, inputHeight, inputWidth]
|
|
* filterData = [outputChannels, inputChannels, filterHeight, filterWidth]
|
|
* outputData = [batchSize, outputChannels, outputHeight, outputWidth]
|
|
*/
|
|
template <class T>
|
|
class NaiveConvFunctor {
|
|
public:
|
|
void operator()(const T* inputData,
|
|
size_t batchSize,
|
|
size_t inputChannels,
|
|
size_t inputHeight,
|
|
size_t inputWidth,
|
|
const T* filterData,
|
|
size_t filterHeight,
|
|
size_t filterWidth,
|
|
T* outputData,
|
|
size_t outputChannels,
|
|
size_t outputHeight,
|
|
size_t outputWidth,
|
|
size_t paddingH,
|
|
size_t paddingW,
|
|
size_t strideH,
|
|
size_t strideW) {
|
|
for (size_t batch = 0; batch < batchSize; batch++) {
|
|
for (size_t outC = 0; outC < outputChannels; outC++) {
|
|
for (size_t outH = 0; outH < outputHeight; outH++) {
|
|
for (size_t outW = 0; outW < outputWidth; outW++) {
|
|
const int inStartH = (outH * strideH) - paddingH;
|
|
const int inStartW = (outW * strideW) - paddingW;
|
|
T outValue = (T)0;
|
|
for (size_t inC = 0; inC < inputChannels; inC++) {
|
|
for (size_t fH = 0; fH < filterHeight; fH++) {
|
|
for (size_t fW = 0; fW < filterWidth; fW++) {
|
|
T inValue;
|
|
const int inH = inStartH + fH;
|
|
const int inW = inStartW + fW;
|
|
if ((inH >= 0 && inH < (int)inputHeight) &&
|
|
(inW >= 0 && inW < (int)inputWidth)) {
|
|
size_t offsetInput =
|
|
batch * inputChannels * inputHeight * inputWidth +
|
|
inC * inputHeight * inputWidth + inH * inputWidth + inW;
|
|
inValue = inputData[offsetInput];
|
|
} else {
|
|
inValue = (T)0;
|
|
}
|
|
size_t offsetFilter =
|
|
outC * inputChannels * filterHeight * filterWidth +
|
|
inC * filterHeight * filterWidth + fH * filterWidth + fW;
|
|
T filterValue = filterData[offsetFilter];
|
|
outValue += (inValue * filterValue);
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t offset =
|
|
batch * outputChannels * outputHeight * outputWidth +
|
|
outC * outputHeight * outputWidth + outH * outputWidth + outW;
|
|
outputData[offset] = outValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <DeviceType Device>
|
|
class NaiveConvFunction : public ConvFunctionBase {
|
|
public:
|
|
void init(const FuncConfig& config) override {
|
|
ConvFunctionBase::init(config);
|
|
}
|
|
|
|
void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
const TensorShape& input = inputs[0].shape();
|
|
const TensorShape& filter = inputs[1].shape();
|
|
const TensorShape& output = outputs[0].shape();
|
|
checkShape(input, filter, output);
|
|
}
|
|
|
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
CHECK_EQ(numInputs_, inputs.size());
|
|
CHECK_EQ(numOutputs_, outputs.size());
|
|
CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);
|
|
check(inputs, outputs);
|
|
|
|
size_t batchSize = inputs[0].shape()[0];
|
|
size_t inputChannels = inputs[0].shape()[1];
|
|
size_t inputHeight = inputs[0].shape()[2];
|
|
size_t inputWidth = inputs[0].shape()[3];
|
|
size_t filterHeight = inputs[1].shape()[2];
|
|
size_t filterWidth = inputs[1].shape()[3];
|
|
size_t outputChannels = outputs[0].shape()[1];
|
|
size_t outputHeight = outputs[0].shape()[2];
|
|
size_t outputWidth = outputs[0].shape()[3];
|
|
|
|
real* inputData = inputs[0].data<real>();
|
|
real* filterData = inputs[1].data<real>();
|
|
real* outputData = outputs[0].data<real>();
|
|
NaiveConvFunctor<real> conv;
|
|
conv(inputData,
|
|
batchSize,
|
|
inputChannels,
|
|
inputHeight,
|
|
inputWidth,
|
|
filterData,
|
|
filterHeight,
|
|
filterWidth,
|
|
outputData,
|
|
outputChannels,
|
|
outputHeight,
|
|
outputWidth,
|
|
paddingH(),
|
|
paddingW(),
|
|
strideH(),
|
|
strideW());
|
|
}
|
|
};
|
|
|
|
REGISTER_TYPED_FUNC(NaiveConv, CPU, NaiveConvFunction);
|
|
|
|
} // namespace paddle
|