You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/distributed/parameter_send.cc

243 lines
8.9 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/distributed/parameter_send.h"
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
#include "paddle/fluid/string/printf.h"
namespace paddle {
namespace operators {
namespace distributed {
using LoDTensor = framework::LoDTensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;
typedef std::vector<std::pair<std::string, std::string>> EP_SPLIT_TABLE_PAIRS;
inline EP_SPLIT_TABLE_PAIRS GetMultiFieldRpcContext(
const RpcContext &rpc_ctx, const framework::Scope &scope, int multi_parts) {
EP_SPLIT_TABLE_PAIRS table_pairs;
auto *send_var = scope.FindVar(rpc_ctx.var_name);
if (send_var->IsType<framework::SelectedRows>()) {
PADDLE_ENFORCE_GT(multi_parts, 0, "multi_parts must >=1");
if (multi_parts == 1) {
for (int i = 0; i < rpc_ctx.splited_var_names.size(); i++) {
table_pairs.push_back(
std::make_pair(rpc_ctx.epmap[i], rpc_ctx.splited_var_names[i]));
}
} else {
for (int i = 0; i < rpc_ctx.splited_var_names.size(); i++) {
for (int x = 0; x < multi_parts; x++) {
auto table =
string::Sprintf("%s@%d@PIECE", rpc_ctx.splited_var_names[i], x);
table_pairs.push_back(std::make_pair(rpc_ctx.epmap[i], table));
}
}
}
} else if (send_var->IsType<framework::LoDTensor>()) {
PADDLE_THROW("GetMultiFieldRpcContext can not support LoDTensor current!");
} else {
PADDLE_THROW("GetMultiFieldRpcContext unsupported var type!");
}
return table_pairs;
} // namespace distributed
template <typename T>
void ParameterSend<T>::operator()(const RpcContext &rpc_ctx,
const framework::Scope &scope, bool sync,
int multi_parts) {
std::unique_ptr<framework::Scope> local_scope = scope.NewTmpScope();
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &cpu_ctx = *pool.Get(platform::CPUPlace());
distributed::RPCClient *rpc_client =
distributed::RPCClient::GetInstance<RPCCLIENT_T>(rpc_ctx.trainer_id);
std::vector<distributed::VarHandlePtr> rets;
auto *send_var = scope.FindVar(rpc_ctx.var_name);
if (send_var->IsType<framework::LoDTensor>()) {
size_t out_num = rpc_ctx.splited_var_names.size();
if (out_num > 1) {
auto &send_tensor = send_var->Get<framework::LoDTensor>();
auto &send_tensor_dims = send_tensor.dims();
std::vector<framework::DDim> outs_dims;
outs_dims.reserve(out_num);
// infer output shape
PADDLE_ENFORCE_EQ(rpc_ctx.height_sections.size(), out_num,
"tensor split sections size"
"should be equal to output size.");
for (size_t i = 0; i < out_num; ++i) {
auto dim = send_tensor_dims;
dim[0] = rpc_ctx.height_sections[i];
outs_dims.push_back(dim);
}
// create output var in local scope
size_t row_offset = 0;
for (auto i = 0; i < out_num; ++i) {
framework::Tensor *out = local_scope->Var(rpc_ctx.splited_var_names[i])
->GetMutable<framework::LoDTensor>();
*out = send_tensor.Slice(row_offset, row_offset + outs_dims[i][0]);
row_offset += outs_dims[i][0];
}
}
for (size_t i = 0; i < rpc_ctx.splited_var_names.size(); i++) {
auto &send_var_name = rpc_ctx.splited_var_names[i];
VLOG(4) << "send var name: " << send_var_name;
auto &endpoint = rpc_ctx.epmap[i];
VLOG(4) << "send var endpoint: " << endpoint;
VLOG(4) << "need send: " << NeedSend(*local_scope.get(), send_var_name);
if (NeedSend(*local_scope.get(), send_var_name)) {
VLOG(3) << "sending " << send_var_name << " to " << endpoint;
rets.push_back(rpc_client->AsyncSendVar(
endpoint, cpu_ctx, *local_scope.get(), send_var_name));
VLOG(4) << "send var " << send_var_name << " async handle done";
} else {
VLOG(3) << "don't send non-initialized variable: "
<< rpc_ctx.splited_var_names[i];
}
}
} else if (send_var->IsType<framework::SelectedRows>()) {
auto &send_slr = send_var->Get<framework::SelectedRows>();
auto abs_sections = ToAbsoluteSection(rpc_ctx.height_sections);
auto &send_rows = send_slr.rows();
std::vector<std::vector<size_t>> outs_rows_idx;
std::vector<std::vector<size_t>> outs_dense_idx;
auto table_pairs = GetMultiFieldRpcContext(rpc_ctx, scope, multi_parts);
outs_rows_idx.resize(table_pairs.size());
outs_dense_idx.resize(table_pairs.size());
auto row_numel = send_slr.value().numel() / send_slr.value().dims()[0];
auto *src = send_slr.value().data<T>();
// create output var in local scope
std::vector<framework::SelectedRows *> outs;
for (auto &table : table_pairs) {
auto *out =
local_scope->Var(table.second)->GetMutable<framework::SelectedRows>();
outs.push_back(out);
}
// split rows index into output sparse vars
for (size_t i = 0; i < send_rows.size(); ++i) {
auto ep_idx = GetSectionIndex(send_rows[i], abs_sections);
auto table_idx = send_rows[i] % multi_parts;
auto out_idx = ep_idx * multi_parts + table_idx;
outs_rows_idx[out_idx].push_back(send_rows[i]);
outs_dense_idx[out_idx].push_back(i);
}
auto place = platform::CPUPlace();
for (int ctx = 0; ctx < rpc_ctx.splited_var_names.size(); ctx++) {
for (int part = 0; part < multi_parts; part++) {
auto out_idx = ctx * multi_parts + part;
auto rows_idx = outs_rows_idx[out_idx];
auto dims = send_slr.GetCompleteDims();
dims[0] = rows_idx.size();
outs[out_idx]->set_height(rpc_ctx.height_sections[ctx]);
outs[out_idx]->mutable_rows()->clear();
outs[out_idx]->mutable_value()->mutable_data<T>(dims, send_slr.place());
if (rows_idx.size() > 0) {
for (auto idx : rows_idx) {
outs[out_idx]->mutable_rows()->push_back(idx - abs_sections[ctx]);
}
auto dst = outs[out_idx]->mutable_value()->mutable_data<T>(place);
for (size_t j = 0; j < rows_idx.size(); j++) {
if (platform::is_cpu_place(place)) {
memory::Copy(platform::CPUPlace(), dst + j * row_numel,
platform::CPUPlace(),
src + outs_dense_idx[out_idx][j] * row_numel,
sizeof(T) * row_numel);
} else {
PADDLE_THROW("do not support GPU now");
}
}
}
PADDLE_ENFORCE_EQ(rows_idx.size(), outs[out_idx]->rows().size(),
"rows should has the same size with tensor dim 0");
}
}
for (size_t i = 0; i < table_pairs.size(); i++) {
auto &send_var_name = table_pairs[i].second;
auto &endpoint = table_pairs[i].first;
auto need_send = NeedSend(*local_scope.get(), send_var_name);
VLOG(4) << "send var name: " << send_var_name
<< "send var endpoint: " << endpoint
<< "need send: " << need_send;
if (need_send) {
VLOG(4) << "sending " << send_var_name << " to " << endpoint;
rets.push_back(rpc_client->AsyncSendVar(
endpoint, cpu_ctx, *local_scope.get(), send_var_name));
VLOG(4) << "send var " << send_var_name << " async handle done";
} else {
VLOG(4) << "don't send non-initialized variable: "
<< rpc_ctx.splited_var_names[i];
}
}
} else {
PADDLE_THROW("unsupported var type to send!");
}
VLOG(4) << "Prepare to send var " << rpc_ctx.var_name;
if (sync) {
for (auto &handle : rets) {
VLOG(4) << "Wait send var to pserver handle: " << handle;
PADDLE_ENFORCE(handle->Wait(), "internal error in RPCClient");
}
}
}
template struct ParameterSend<float>;
}; // namespace distributed
}; // namespace operators
}; // namespace paddle