You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
172 lines
5.1 KiB
172 lines
5.1 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <algorithm>
|
|
#include <fstream>
|
|
#include <memory>
|
|
|
|
#include "ValidationLayer.h"
|
|
#include "paddle/utils/Logging.h"
|
|
|
|
namespace paddle {
|
|
|
|
bool ValidationLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
return Layer::init(layerMap, parameterMap);
|
|
}
|
|
|
|
void ValidationLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
|
|
MatrixPtr output = getInputValue(*getOutputLayer());
|
|
CHECK(output);
|
|
IVectorPtr label = getInputLabel(*getLabelLayer());
|
|
CHECK(label);
|
|
validationImp(output, label);
|
|
}
|
|
|
|
void ValidationLayer::backward(const UpdateCallback& callback) {
|
|
(void)callback;
|
|
}
|
|
|
|
bool AucValidation::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
bool ret = ValidationLayer::init(layerMap, parameterMap);
|
|
EvaluatorConfig config;
|
|
config.set_name(getName());
|
|
config.set_type("last-column-auc");
|
|
config.add_input_layers(inputLayers_[0]->getName());
|
|
config.add_input_layers(inputLayers_[1]->getName());
|
|
if (3 == inputLayers_.size()) {
|
|
config.add_input_layers(inputLayers_[2]->getName());
|
|
}
|
|
evaluator_.reset(Evaluator::create(config));
|
|
passBegin_ = false;
|
|
return ret;
|
|
}
|
|
|
|
void AucValidation::validationImp(MatrixPtr output, IVectorPtr label) {
|
|
if (!passBegin_) {
|
|
passBegin_ = true;
|
|
evaluator_->start();
|
|
}
|
|
|
|
bool supportWeight = (3 == inputLayers_.size()) ? true : false;
|
|
MatrixPtr weight = supportWeight ? getInputValue(*inputLayers_[2]) : nullptr;
|
|
if (dynamic_cast<GpuMatrix*>(output.get())) {
|
|
size_t height = output->getHeight();
|
|
size_t width = output->getWidth();
|
|
Matrix::resizeOrCreate(cpuOutput_,
|
|
height,
|
|
width,
|
|
/* trans=*/false,
|
|
/* useGpu=*/false);
|
|
cpuOutput_->copyFrom(*output);
|
|
IVector::resizeOrCreate(cpuLabel_, height, false);
|
|
cpuLabel_->copyFrom(*label);
|
|
|
|
if (supportWeight) {
|
|
Matrix::resizeOrCreate(cpuWeight_, height, (size_t)1, false, false);
|
|
cpuWeight_->copyFrom(*weight);
|
|
}
|
|
|
|
output = cpuOutput_;
|
|
label = cpuLabel_;
|
|
weight = cpuWeight_;
|
|
}
|
|
|
|
for (size_t i = 0; i < output->getHeight(); i++) {
|
|
float y1 = output->getData()[i * output->getWidth() + 1];
|
|
int* labels = label->getData();
|
|
predictArray_.push_back(PredictionResult(y1, labels[i]));
|
|
}
|
|
std::vector<Argument> arguments;
|
|
if (3 == inputLayers_.size()) {
|
|
arguments.resize(3);
|
|
arguments[2].value = weight;
|
|
} else {
|
|
arguments.resize(2);
|
|
}
|
|
arguments[0].value = output;
|
|
arguments[1].ids = label;
|
|
evaluator_->evalImp(arguments);
|
|
}
|
|
|
|
void AucValidation::onPassEnd() {
|
|
if (!FLAGS_predict_file.empty()) {
|
|
std::ofstream fs(FLAGS_predict_file);
|
|
CHECK(fs) << "Fail to open " << FLAGS_predict_file;
|
|
for (auto& res : predictArray_) {
|
|
fs << res.out << " " << res.label << std::endl;
|
|
}
|
|
}
|
|
|
|
evaluator_->finish();
|
|
LOG(INFO) << *evaluator_;
|
|
passBegin_ = false;
|
|
predictArray_.clear();
|
|
}
|
|
|
|
bool PnpairValidation::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
bool ret = ValidationLayer::init(layerMap, parameterMap);
|
|
if (!ret) return ret;
|
|
CHECK_GE(inputLayers_.size(), 3UL);
|
|
CHECK_LE(inputLayers_.size(), 4UL);
|
|
EvaluatorConfig config;
|
|
config.set_name(getName());
|
|
config.set_type("pnpair");
|
|
config.add_input_layers(inputLayers_[0]->getName());
|
|
config.add_input_layers(inputLayers_[1]->getName());
|
|
config.add_input_layers(inputLayers_[2]->getName());
|
|
if (4 == inputLayers_.size()) {
|
|
config.add_input_layers(inputLayers_[3]->getName());
|
|
}
|
|
evaluator_.reset(Evaluator::create(config));
|
|
passBegin_ = false;
|
|
return true;
|
|
}
|
|
|
|
void PnpairValidation::validationImp(MatrixPtr output, IVectorPtr label) {
|
|
if (!passBegin_) {
|
|
passBegin_ = true;
|
|
evaluator_->start();
|
|
}
|
|
MatrixPtr weight =
|
|
(4 == inputLayers_.size()) ? getInputValue(*inputLayers_[3]) : nullptr;
|
|
IVectorPtr info = getInputLabel(*getInfoLayer());
|
|
std::vector<Argument> arguments;
|
|
if (4 == inputLayers_.size()) {
|
|
arguments.resize(4);
|
|
arguments[3].value = weight;
|
|
} else {
|
|
arguments.resize(3);
|
|
}
|
|
arguments[0].value = output;
|
|
arguments[1].ids = label;
|
|
arguments[2].ids = info;
|
|
evaluator_->evalImp(arguments);
|
|
}
|
|
|
|
void PnpairValidation::onPassEnd() {
|
|
if (!FLAGS_predict_file.empty()) {
|
|
(dynamic_cast<PnpairEvaluator*>(evaluator_.get()))->printPredictResults();
|
|
}
|
|
evaluator_->finish();
|
|
LOG(INFO) << *evaluator_;
|
|
passBegin_ = false;
|
|
}
|
|
|
|
} // namespace paddle
|