You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
7.0 KiB
186 lines
7.0 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <stdint.h>
|
|
#include <sys/stat.h>
|
|
#include <ostream>
|
|
#include <thread>
|
|
|
|
#include <unistd.h>
|
|
|
|
#include "paddle/framework/data_type.h"
|
|
#include "paddle/framework/executor.h"
|
|
#include "paddle/framework/framework.pb.h"
|
|
#include "paddle/framework/lod_tensor.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/framework/proto_desc.h"
|
|
#include "paddle/operators/detail/send_recv_impl.h"
|
|
#include "paddle/operators/detail/simple_block_queue.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
void RunServer(Server **rpc_server,
|
|
std::shared_ptr<detail::SendRecvServerImpl> service,
|
|
const std::string &server_address) {
|
|
ServerBuilder builder;
|
|
builder.AddListeningPort(server_address, grpc::InsecureServerCredentials());
|
|
builder.RegisterService(service.get());
|
|
std::unique_ptr<Server> server(builder.BuildAndStart());
|
|
*rpc_server = server.get();
|
|
LOG(INFO) << "Server listening on " << server_address << std::endl;
|
|
server->Wait();
|
|
}
|
|
|
|
class RecvOp : public framework::OperatorBase {
|
|
public:
|
|
RecvOp(const std::string &type, const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorBase(type, inputs, outputs, attrs) {
|
|
if (!rpc_service_) {
|
|
rpc_service_.reset(new detail::SendRecvServerImpl());
|
|
std::string endpoint = Attr<std::string>("endpoint");
|
|
server_thread_.reset(
|
|
new std::thread(RunServer, &rpc_server_, rpc_service_, endpoint));
|
|
}
|
|
}
|
|
|
|
virtual ~RecvOp() {
|
|
rpc_server_->Shutdown();
|
|
server_thread_->join();
|
|
}
|
|
|
|
std::string GetGradVarNameForTrainer(const std::string &varname) const {
|
|
if (grads_counter_.find(varname) == grads_counter_.end()) {
|
|
grads_counter_[varname] = 0;
|
|
}
|
|
char ret[256];
|
|
snprintf(ret, sizeof(ret), "%s.trainer_%d", varname.c_str(),
|
|
grads_counter_[varname]++);
|
|
return std::string(ret);
|
|
}
|
|
|
|
void Run(const framework::Scope &scope,
|
|
const platform::Place &dev_place) const override {
|
|
// FIXME(typhoonzero): no new scopes for every run.
|
|
framework::Scope &recv_scope = scope.NewScope();
|
|
rpc_service_->SetScope(&recv_scope);
|
|
auto param_list = Attr<std::vector<std::string>>("ParamList");
|
|
auto grad_list = Attr<std::vector<std::string>>("GradList");
|
|
auto trainer_count = Attr<int>("Trainers");
|
|
size_t param_count = param_list.size();
|
|
rpc_service_->Reset();
|
|
// TODO(typhoonzero): change this to a while_op for every cluster-batch.
|
|
while (true) {
|
|
// Get from multiple trainers, we don't care about order in which
|
|
// the gradient arrives, just add suffix 0~n then average the gradient.
|
|
for (size_t i = 0; i < param_count * trainer_count; ++i) {
|
|
// blocking get one var from client.
|
|
const detail::TensorWithName &v = rpc_service_->Get();
|
|
auto grad_var_name = v.first;
|
|
auto it = std::find(grad_list.begin(), grad_list.end(), grad_var_name);
|
|
std::string param_var_name;
|
|
if (it != grad_list.end()) {
|
|
param_var_name = param_list[it - grad_list.begin()];
|
|
} else {
|
|
LOG(ERROR) << "grad have no paired param found!";
|
|
}
|
|
VLOG(3) << "recved grad: " << grad_var_name
|
|
<< " updating param: " << param_var_name;
|
|
auto *merged_grad = recv_scope.FindVar(grad_var_name);
|
|
if (merged_grad == nullptr) {
|
|
// create output of merged var.
|
|
auto merged_var = recv_scope.Var(grad_var_name);
|
|
merged_var->GetMutable<framework::LoDTensor>();
|
|
}
|
|
|
|
if (trainer_count > 1) {
|
|
grad_var_name = this->GetGradVarNameForTrainer(grad_var_name);
|
|
}
|
|
|
|
auto *var = recv_scope.Var(grad_var_name);
|
|
auto *tensor = var->GetMutable<framework::LoDTensor>();
|
|
// FIXME(typhoonzero): do not copy
|
|
platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
|
|
auto &dev_ctx = *pool.Borrow(place);
|
|
framework::CopyFrom(v.second, place, dev_ctx, tensor);
|
|
}
|
|
rpc_service_->Reset();
|
|
|
|
std::string program_str = Attr<std::string>("OptimizeProgram");
|
|
framework::proto::ProgramDesc program_desc;
|
|
program_desc.ParseFromString(program_str);
|
|
framework::ProgramDesc program(program_desc);
|
|
framework::Executor executor(place);
|
|
// Run sub graph to get optimized tensor
|
|
try {
|
|
executor.Run(program, &recv_scope, 0, /*global_block*/
|
|
false /*create_local_scope*/, false /*create_vars*/);
|
|
} catch (std::exception &e) {
|
|
LOG(ERROR) << "run sub program error " << e.what();
|
|
}
|
|
rpc_service_->Done();
|
|
grads_counter_.clear();
|
|
} // while(true)
|
|
}
|
|
|
|
protected:
|
|
// grpc server instance to track status and gracefully shutdown.
|
|
// borrow an pointer from server thread.
|
|
Server *rpc_server_{nullptr};
|
|
// grpc send/recv service implement to register.
|
|
std::shared_ptr<detail::SendRecvServerImpl> rpc_service_;
|
|
std::shared_ptr<std::thread> server_thread_;
|
|
mutable std::unordered_map<std::string, int> grads_counter_;
|
|
};
|
|
|
|
class RecvOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
RecvOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("RX", "(Tensor) Input tensor to be optimized").AsDuplicable();
|
|
AddComment(R"DOC(
|
|
Recv operator
|
|
|
|
This operator will recv tensor from send_op
|
|
)DOC");
|
|
AddAttr<std::string>("endpoint",
|
|
"(string, default 127.0.0.1:6164)"
|
|
"IP address to listen on.")
|
|
.SetDefault("127.0.0.1:6164")
|
|
.AddCustomChecker([](const std::string &ip) { return !ip.empty(); });
|
|
AddAttr<std::string>("OptimizeProgram", "type string",
|
|
"Serialized ProgramDesc string for recv to run.");
|
|
AddAttr<std::vector<std::string>>(
|
|
"ParamList", "type list of string",
|
|
"grad->param name mapping to find which param to optimize.")
|
|
.SetDefault({});
|
|
AddAttr<std::vector<std::string>>(
|
|
"GradList", "type list of string",
|
|
"grad->param name mapping to find which param to optimize.")
|
|
.SetDefault({});
|
|
AddAttr<int>("Trainers", "type int",
|
|
"Number of trainers in the current cluster job")
|
|
.SetDefault(1);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(recv, ops::RecvOp, ops::RecvOpMaker);
|