You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
156 lines
5.9 KiB
156 lines
5.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/operators/math/math_function.h"
|
|
#include "paddle/operators/math/sequence_pooling.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SequencePoolKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* in = context.Input<LoDTensor>("X");
|
|
auto* out = context.Output<Tensor>("Out");
|
|
std::string pooltype = context.Attr<std::string>("pooltype");
|
|
|
|
auto dims = in->dims();
|
|
auto lod = in->lod();
|
|
int64_t w = in->numel() / dims[0];
|
|
|
|
// InferShape by lod
|
|
PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
|
|
PADDLE_ENFORCE_GE(
|
|
dims[0],
|
|
/*batch size = */ static_cast<int64_t>(lod[0].size() - 1),
|
|
"The first dimension of Input(X) must be large than batch size.");
|
|
dims[0] = lod[0].size() - 1;
|
|
out->Resize({dims});
|
|
|
|
auto lod_level_0 = lod[0];
|
|
|
|
out->mutable_data<T>(context.GetPlace());
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
if (pooltype == "MAX") {
|
|
math::MaxSeqPoolFunctor<DeviceContext, T> max_pool;
|
|
auto* index = context.Output<Tensor>("MaxIndex");
|
|
index->Resize({dims});
|
|
index->mutable_data<int>(context.GetPlace());
|
|
max_pool(dev_ctx, *in, out, index);
|
|
return;
|
|
}
|
|
|
|
auto& place =
|
|
*context.template device_context<DeviceContext>().eigen_device();
|
|
for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
|
|
Tensor in_t = in->Slice(static_cast<int>(lod_level_0[i]),
|
|
static_cast<int>(lod_level_0[i + 1]));
|
|
Tensor out_t = out->Slice(i, i + 1);
|
|
int64_t h = static_cast<int64_t>(lod_level_0[i + 1] - lod_level_0[i]);
|
|
auto in_e = EigenMatrix<T>::From(in_t, framework::make_ddim({h, w}));
|
|
auto out_e = EigenVector<T>::Flatten(out_t);
|
|
|
|
if (pooltype == "AVERAGE") {
|
|
out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}}));
|
|
} else if (pooltype == "SUM") {
|
|
out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}}));
|
|
} else if (pooltype == "SQRT") {
|
|
out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}})) /
|
|
std::sqrt(static_cast<T>(h));
|
|
} else if (pooltype == "LAST") {
|
|
out_e.device(place) = in_e.chip(h - 1, 0);
|
|
} else if (pooltype == "FIRST") {
|
|
out_e.device(place) = in_e.chip(0, 0);
|
|
} else {
|
|
PADDLE_THROW("unsupported pooling pooltype");
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SequencePoolGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* in = context.Input<LoDTensor>("X");
|
|
auto* out_g = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
|
|
std::string pooltype = context.Attr<std::string>("pooltype");
|
|
|
|
auto dims = in->dims();
|
|
auto lod = in->lod()[0];
|
|
int64_t w = in->numel() / dims[0];
|
|
|
|
in_g->mutable_data<T>(context.GetPlace());
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
|
|
if (pooltype == "MAX") {
|
|
math::MaxSeqPoolGradFunctor<DeviceContext, T> max_pool_grad;
|
|
auto* index = context.Input<Tensor>("MaxIndex");
|
|
max_pool_grad(dev_ctx, *out_g, *index, in_g);
|
|
return;
|
|
}
|
|
|
|
if (pooltype == "LAST" || pooltype == "FIRST") {
|
|
// set X@Grad be zero at first when pooltype is LAST/FIRST
|
|
math::SetConstant<DeviceContext, T> functor;
|
|
functor(dev_ctx, in_g, 0);
|
|
}
|
|
auto& place =
|
|
*context.template device_context<DeviceContext>().eigen_device();
|
|
|
|
for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
|
|
auto in_g_t =
|
|
in_g->Slice(static_cast<int>(lod[i]), static_cast<int>(lod[i + 1]));
|
|
auto out_g_t = out_g->Slice(i, i + 1);
|
|
int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
|
|
auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w});
|
|
auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w});
|
|
auto out_g_e_v = EigenVector<T>::Flatten(out_g_t);
|
|
Eigen::DSizes<int, 2> bcast(h, 1);
|
|
|
|
if (pooltype == "AVERAGE") {
|
|
in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
|
|
} else if (pooltype == "SUM") {
|
|
in_g_e.device(place) = (out_g_e).broadcast(bcast);
|
|
} else if (pooltype == "SQRT") {
|
|
in_g_e.device(place) =
|
|
(out_g_e / std::sqrt(static_cast<T>(h))).broadcast(bcast);
|
|
} else if (pooltype == "LAST") {
|
|
in_g_e.chip(h - 1, 0).device(place) = out_g_e_v;
|
|
} else if (pooltype == "FIRST") {
|
|
in_g_e.chip(0, 0).device(place) = out_g_e_v;
|
|
} else {
|
|
PADDLE_THROW("unsupported pooling pooltype");
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|