You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/capi/pd_predictor.cc

319 lines
11 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <map>
#include <memory>
#include <numeric>
#include <vector>
#include "paddle/fluid/inference/api/paddle_api.h"
#include "paddle/fluid/inference/capi/c_api_internal.h"
#include "paddle/fluid/inference/capi/paddle_c_api.h"
#include "paddle/fluid/platform/enforce.h"
using paddle::ConvertToACPrecision;
using paddle::ConvertToPaddleDType;
using paddle::ConvertToPDDataType;
namespace {
#define _DataTypeHelper_(CALLBACK, CPP_TYPE, PD_TYPE) \
CALLBACK(CPP_TYPE, PD_DataType::PD_TYPE);
#define _DataType_(CALLBACK) \
_DataTypeHelper_(CALLBACK, float, PD_FLOAT32); \
_DataTypeHelper_(CALLBACK, int32_t, PD_INT32); \
_DataTypeHelper_(CALLBACK, int64_t, PD_INT64); \
_DataTypeHelper_(CALLBACK, uint8_t, PD_UINT8);
template <typename Visitor>
inline void VisitDataType(PD_DataType type, Visitor visitor) {
#define VisitDataTypeCallback(CPP_TYPE, PD_TYPE) \
do { \
if (type == PD_TYPE) { \
visitor.template apply<CPP_TYPE>(); \
return; \
} \
} while (0)
_DataType_(VisitDataTypeCallback);
#undef VisitDataTypeCallback
PADDLE_THROW(
paddle::platform::errors::InvalidArgument("Unsupported data type."));
}
struct PD_ZeroCopyFunctor {
PD_ZeroCopyData* output_i;
paddle::ZeroCopyTensor* output_t;
PD_ZeroCopyFunctor(PD_ZeroCopyData* output_i_,
paddle::ZeroCopyTensor* output_t_)
: output_i(output_i_), output_t(output_t_) {}
template <typename OutT>
void apply() {
std::vector<OutT> out_data;
int out_num =
std::accumulate(output_i->shape, output_i->shape + output_i->shape_size,
1, std::multiplies<int>());
out_data.resize(out_num);
output_t->copy_to_cpu(out_data.data());
output_i->data = reinterpret_cast<void*>(malloc(out_num * sizeof(OutT)));
memmove(static_cast<OutT*>(output_i->data), out_data.data(),
out_num * sizeof(OutT));
}
};
} // namespace
extern "C" {
bool PD_PredictorRun(const PD_AnalysisConfig* config, PD_Tensor* inputs,
int in_size, PD_Tensor** output_data, int* out_size,
int batch_size) {
PADDLE_ENFORCE_NOT_NULL(
config,
paddle::platform::errors::InvalidArgument(
"The pointer of analysis configuration shouldn't be nullptr"));
VLOG(3) << "Predoctor: PD_PredictorRun. ";
static std::map<std::string, std::unique_ptr<paddle::PaddlePredictor>>
predictors;
if (!predictors.count(config->config.model_dir())) {
predictors[config->config.model_dir()] =
paddle::CreatePaddlePredictor(config->config);
}
auto& predictor = predictors[config->config.model_dir()];
std::vector<paddle::PaddleTensor> in;
for (int i = 0; i < in_size; ++i) {
in.emplace_back(inputs->tensor);
}
std::vector<paddle::PaddleTensor> out;
VLOG(3) << "Run predictor in CAPI encapsulation. ";
if (predictor->Run(in, &out, batch_size)) {
int osize = out.size();
*output_data = new PD_Tensor[osize];
for (int i = 0; i < osize; ++i) {
output_data[i]->tensor = out[i];
}
*out_size = osize;
return true;
}
return false;
}
bool PD_PredictorZeroCopyRun(const PD_AnalysisConfig* config,
PD_ZeroCopyData* inputs, int in_size,
PD_ZeroCopyData** output, int* out_size) {
PADDLE_ENFORCE_NOT_NULL(
config,
paddle::platform::errors::InvalidArgument(
"The pointer of analysis configuration shouldn't be nullptr"));
static std::map<std::string, std::unique_ptr<paddle::PaddlePredictor>>
predictors;
if (!predictors.count(config->config.model_dir())) {
predictors[config->config.model_dir()] =
paddle::CreatePaddlePredictor(config->config);
}
auto& predictor = predictors[config->config.model_dir()];
auto input_names = predictor->GetInputNames();
VLOG(3) << "The inputs' size is " << input_names.size();
PADDLE_ENFORCE_EQ(
input_names.size(), in_size,
paddle::platform::errors::InvalidArgument(
"The number of input and the number of model's input must match. The "
"number of input is %d, the number of model's input is %d.",
input_names.size(), in_size));
for (int i = 0; i < in_size; ++i) {
auto input_t = predictor->GetInputTensor(inputs[i].name);
std::vector<int> tensor_shape;
tensor_shape.assign(inputs[i].shape,
inputs[i].shape + inputs[i].shape_size);
input_t->Reshape(tensor_shape);
switch (inputs[i].dtype) {
case PD_FLOAT32:
input_t->copy_from_cpu(static_cast<float*>(inputs[i].data));
break;
case PD_INT32:
input_t->copy_from_cpu(static_cast<int32_t*>(inputs[i].data));
break;
case PD_INT64:
input_t->copy_from_cpu(static_cast<int64_t*>(inputs[i].data));
break;
case PD_UINT8:
input_t->copy_from_cpu(static_cast<uint8_t*>(inputs[i].data));
break;
default:
PADDLE_THROW(paddle::platform::errors::InvalidArgument(
"Unsupported data type."));
break;
}
}
VLOG(3) << "Run ZeroCopyRun() in CAPI encapsulation. ";
CHECK(predictor->ZeroCopyRun());
auto output_names = predictor->GetOutputNames();
int osize = output_names.size();
*out_size = osize;
*output = new PD_ZeroCopyData[osize];
VLOG(3) << "The output size is " << osize;
for (int i = 0; i < *out_size; ++i) {
auto& output_i = (*output)[i];
output_i.name = new char[output_names[i].length() + 1];
snprintf(output_i.name, output_names[i].length() + 1, "%s",
output_names[i].c_str());
auto output_t = predictor->GetOutputTensor(output_names[i]);
output_i.dtype = ConvertToPDDataType(output_t->type());
std::vector<int> output_shape = output_t->shape();
output_i.shape = new int[output_shape.size()];
memmove(output_i.shape, output_shape.data(),
output_shape.size() * sizeof(int));
output_i.shape_size = output_shape.size();
VisitDataType(output_i.dtype,
PD_ZeroCopyFunctor(&output_i, std::move(output_t.get())));
}
return true;
}
PD_Predictor* PD_NewPredictor(const PD_AnalysisConfig* config) {
PD_Predictor* predictor = new PD_Predictor;
predictor->predictor = paddle::CreatePaddlePredictor(config->config);
return predictor;
}
void PD_DeletePredictor(PD_Predictor* predictor) {
if (predictor) {
predictor->predictor = nullptr;
delete predictor;
predictor = nullptr;
}
}
int PD_GetInputNum(const PD_Predictor* predictor) {
return static_cast<int>(predictor->predictor->GetInputNames().size());
}
int PD_GetOutputNum(const PD_Predictor* predictor) {
return static_cast<int>(predictor->predictor->GetOutputNames().size());
}
const char* PD_GetInputName(const PD_Predictor* predictor, int n) {
static std::vector<std::string> names = predictor->predictor->GetInputNames();
return names[n].c_str();
}
const char* PD_GetOutputName(const PD_Predictor* predictor, int n) {
static std::vector<std::string> names =
predictor->predictor->GetOutputNames();
return names[n].c_str();
}
void PD_SetZeroCopyInput(PD_Predictor* predictor,
const PD_ZeroCopyTensor* tensor) {
auto input = predictor->predictor->GetInputTensor(tensor->name);
auto* shape_ptr = static_cast<int*>(tensor->shape.data);
std::vector<int> shape(shape_ptr,
shape_ptr + tensor->shape.length / sizeof(int));
input->Reshape(std::move(shape));
switch (tensor->dtype) {
case PD_FLOAT32:
input->copy_from_cpu(static_cast<float*>(tensor->data.data));
break;
case PD_INT32:
input->copy_from_cpu(static_cast<int32_t*>(tensor->data.data));
break;
case PD_INT64:
input->copy_from_cpu(static_cast<int64_t*>(tensor->data.data));
break;
case PD_UINT8:
input->copy_from_cpu(static_cast<uint8_t*>(tensor->data.data));
break;
default:
PADDLE_THROW(
paddle::platform::errors::InvalidArgument("Unsupported data type."));
break;
}
if (tensor->lod.length) {
auto* lod_ptr = reinterpret_cast<size_t*>(tensor->lod.data);
std::vector<size_t> lod;
lod.assign(lod_ptr, lod_ptr + tensor->lod.length / sizeof(size_t));
input->SetLoD({std::move(lod)});
}
}
void PD_GetZeroCopyOutput(PD_Predictor* predictor, PD_ZeroCopyTensor* tensor) {
auto output = predictor->predictor->GetOutputTensor(tensor->name);
tensor->dtype = ConvertToPDDataType(output->type());
auto shape = output->shape();
size_t shape_size = shape.size();
if (tensor->shape.capacity < shape_size * sizeof(int)) {
if (tensor->shape.data || tensor->shape.capacity) {
std::free(tensor->shape.data);
}
tensor->shape.data = std::malloc(shape_size * sizeof(int));
tensor->shape.capacity = shape_size * sizeof(int);
}
tensor->shape.length = shape_size * sizeof(int);
std::copy(shape.begin(), shape.end(), static_cast<int*>(tensor->shape.data));
int n =
std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>());
size_t length = n * paddle::PaddleDtypeSize(output->type());
if (tensor->data.capacity < length) {
if (tensor->data.data) {
std::free(tensor->data.data);
}
tensor->data.data = std::malloc(length);
tensor->data.capacity = std::move(length);
}
tensor->data.length = length;
auto lod = output->lod();
if (!lod.empty()) {
tensor->lod.length = lod.front().size() * sizeof(size_t);
if (tensor->lod.capacity < lod.front().size()) {
if (tensor->lod.data) {
std::free(tensor->lod.data);
}
tensor->lod.data = std::malloc(lod.front().size() * sizeof(size_t));
tensor->lod.capacity = lod.front().size() * sizeof(size_t);
}
std::copy(lod.front().begin(), lod.front().end(),
reinterpret_cast<size_t*>(tensor->lod.data));
}
switch (tensor->dtype) {
case PD_FLOAT32:
output->copy_to_cpu(reinterpret_cast<float*>(tensor->data.data));
break;
case PD_INT32:
output->copy_to_cpu(reinterpret_cast<int32_t*>(tensor->data.data));
break;
case PD_INT64:
output->copy_to_cpu(reinterpret_cast<int64_t*>(tensor->data.data));
break;
case PD_UINT8:
output->copy_to_cpu(reinterpret_cast<uint8_t*>(tensor->data.data));
break;
default:
PADDLE_THROW(
paddle::platform::errors::InvalidArgument("Unsupported data type."));
break;
}
}
void PD_ZeroCopyRun(PD_Predictor* predictor) {
predictor->predictor->ZeroCopyRun();
}
} // extern "C"