You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
319 lines
11 KiB
319 lines
11 KiB
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <algorithm>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <numeric>
|
|
#include <vector>
|
|
#include "paddle/fluid/inference/api/paddle_api.h"
|
|
#include "paddle/fluid/inference/capi/c_api_internal.h"
|
|
#include "paddle/fluid/inference/capi/paddle_c_api.h"
|
|
#include "paddle/fluid/platform/enforce.h"
|
|
|
|
using paddle::ConvertToACPrecision;
|
|
using paddle::ConvertToPaddleDType;
|
|
using paddle::ConvertToPDDataType;
|
|
|
|
namespace {
|
|
#define _DataTypeHelper_(CALLBACK, CPP_TYPE, PD_TYPE) \
|
|
CALLBACK(CPP_TYPE, PD_DataType::PD_TYPE);
|
|
|
|
#define _DataType_(CALLBACK) \
|
|
_DataTypeHelper_(CALLBACK, float, PD_FLOAT32); \
|
|
_DataTypeHelper_(CALLBACK, int32_t, PD_INT32); \
|
|
_DataTypeHelper_(CALLBACK, int64_t, PD_INT64); \
|
|
_DataTypeHelper_(CALLBACK, uint8_t, PD_UINT8);
|
|
|
|
template <typename Visitor>
|
|
inline void VisitDataType(PD_DataType type, Visitor visitor) {
|
|
#define VisitDataTypeCallback(CPP_TYPE, PD_TYPE) \
|
|
do { \
|
|
if (type == PD_TYPE) { \
|
|
visitor.template apply<CPP_TYPE>(); \
|
|
return; \
|
|
} \
|
|
} while (0)
|
|
|
|
_DataType_(VisitDataTypeCallback);
|
|
#undef VisitDataTypeCallback
|
|
PADDLE_THROW(
|
|
paddle::platform::errors::InvalidArgument("Unsupported data type."));
|
|
}
|
|
|
|
struct PD_ZeroCopyFunctor {
|
|
PD_ZeroCopyData* output_i;
|
|
paddle::ZeroCopyTensor* output_t;
|
|
|
|
PD_ZeroCopyFunctor(PD_ZeroCopyData* output_i_,
|
|
paddle::ZeroCopyTensor* output_t_)
|
|
: output_i(output_i_), output_t(output_t_) {}
|
|
|
|
template <typename OutT>
|
|
void apply() {
|
|
std::vector<OutT> out_data;
|
|
int out_num =
|
|
std::accumulate(output_i->shape, output_i->shape + output_i->shape_size,
|
|
1, std::multiplies<int>());
|
|
out_data.resize(out_num);
|
|
output_t->copy_to_cpu(out_data.data());
|
|
output_i->data = reinterpret_cast<void*>(malloc(out_num * sizeof(OutT)));
|
|
memmove(static_cast<OutT*>(output_i->data), out_data.data(),
|
|
out_num * sizeof(OutT));
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
extern "C" {
|
|
bool PD_PredictorRun(const PD_AnalysisConfig* config, PD_Tensor* inputs,
|
|
int in_size, PD_Tensor** output_data, int* out_size,
|
|
int batch_size) {
|
|
PADDLE_ENFORCE_NOT_NULL(
|
|
config,
|
|
paddle::platform::errors::InvalidArgument(
|
|
"The pointer of analysis configuration shouldn't be nullptr"));
|
|
VLOG(3) << "Predoctor: PD_PredictorRun. ";
|
|
static std::map<std::string, std::unique_ptr<paddle::PaddlePredictor>>
|
|
predictors;
|
|
if (!predictors.count(config->config.model_dir())) {
|
|
predictors[config->config.model_dir()] =
|
|
paddle::CreatePaddlePredictor(config->config);
|
|
}
|
|
auto& predictor = predictors[config->config.model_dir()];
|
|
std::vector<paddle::PaddleTensor> in;
|
|
for (int i = 0; i < in_size; ++i) {
|
|
in.emplace_back(inputs->tensor);
|
|
}
|
|
std::vector<paddle::PaddleTensor> out;
|
|
VLOG(3) << "Run predictor in CAPI encapsulation. ";
|
|
if (predictor->Run(in, &out, batch_size)) {
|
|
int osize = out.size();
|
|
*output_data = new PD_Tensor[osize];
|
|
for (int i = 0; i < osize; ++i) {
|
|
output_data[i]->tensor = out[i];
|
|
}
|
|
*out_size = osize;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool PD_PredictorZeroCopyRun(const PD_AnalysisConfig* config,
|
|
PD_ZeroCopyData* inputs, int in_size,
|
|
PD_ZeroCopyData** output, int* out_size) {
|
|
PADDLE_ENFORCE_NOT_NULL(
|
|
config,
|
|
paddle::platform::errors::InvalidArgument(
|
|
"The pointer of analysis configuration shouldn't be nullptr"));
|
|
static std::map<std::string, std::unique_ptr<paddle::PaddlePredictor>>
|
|
predictors;
|
|
if (!predictors.count(config->config.model_dir())) {
|
|
predictors[config->config.model_dir()] =
|
|
paddle::CreatePaddlePredictor(config->config);
|
|
}
|
|
auto& predictor = predictors[config->config.model_dir()];
|
|
auto input_names = predictor->GetInputNames();
|
|
VLOG(3) << "The inputs' size is " << input_names.size();
|
|
PADDLE_ENFORCE_EQ(
|
|
input_names.size(), in_size,
|
|
paddle::platform::errors::InvalidArgument(
|
|
"The number of input and the number of model's input must match. The "
|
|
"number of input is %d, the number of model's input is %d.",
|
|
input_names.size(), in_size));
|
|
for (int i = 0; i < in_size; ++i) {
|
|
auto input_t = predictor->GetInputTensor(inputs[i].name);
|
|
std::vector<int> tensor_shape;
|
|
tensor_shape.assign(inputs[i].shape,
|
|
inputs[i].shape + inputs[i].shape_size);
|
|
input_t->Reshape(tensor_shape);
|
|
switch (inputs[i].dtype) {
|
|
case PD_FLOAT32:
|
|
input_t->copy_from_cpu(static_cast<float*>(inputs[i].data));
|
|
break;
|
|
case PD_INT32:
|
|
input_t->copy_from_cpu(static_cast<int32_t*>(inputs[i].data));
|
|
break;
|
|
case PD_INT64:
|
|
input_t->copy_from_cpu(static_cast<int64_t*>(inputs[i].data));
|
|
break;
|
|
case PD_UINT8:
|
|
input_t->copy_from_cpu(static_cast<uint8_t*>(inputs[i].data));
|
|
break;
|
|
default:
|
|
PADDLE_THROW(paddle::platform::errors::InvalidArgument(
|
|
"Unsupported data type."));
|
|
break;
|
|
}
|
|
}
|
|
VLOG(3) << "Run ZeroCopyRun() in CAPI encapsulation. ";
|
|
CHECK(predictor->ZeroCopyRun());
|
|
auto output_names = predictor->GetOutputNames();
|
|
int osize = output_names.size();
|
|
*out_size = osize;
|
|
*output = new PD_ZeroCopyData[osize];
|
|
VLOG(3) << "The output size is " << osize;
|
|
for (int i = 0; i < *out_size; ++i) {
|
|
auto& output_i = (*output)[i];
|
|
output_i.name = new char[output_names[i].length() + 1];
|
|
snprintf(output_i.name, output_names[i].length() + 1, "%s",
|
|
output_names[i].c_str());
|
|
auto output_t = predictor->GetOutputTensor(output_names[i]);
|
|
output_i.dtype = ConvertToPDDataType(output_t->type());
|
|
std::vector<int> output_shape = output_t->shape();
|
|
output_i.shape = new int[output_shape.size()];
|
|
memmove(output_i.shape, output_shape.data(),
|
|
output_shape.size() * sizeof(int));
|
|
output_i.shape_size = output_shape.size();
|
|
VisitDataType(output_i.dtype,
|
|
PD_ZeroCopyFunctor(&output_i, std::move(output_t.get())));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
PD_Predictor* PD_NewPredictor(const PD_AnalysisConfig* config) {
|
|
PD_Predictor* predictor = new PD_Predictor;
|
|
predictor->predictor = paddle::CreatePaddlePredictor(config->config);
|
|
return predictor;
|
|
}
|
|
|
|
void PD_DeletePredictor(PD_Predictor* predictor) {
|
|
if (predictor) {
|
|
predictor->predictor = nullptr;
|
|
delete predictor;
|
|
predictor = nullptr;
|
|
}
|
|
}
|
|
|
|
int PD_GetInputNum(const PD_Predictor* predictor) {
|
|
return static_cast<int>(predictor->predictor->GetInputNames().size());
|
|
}
|
|
|
|
int PD_GetOutputNum(const PD_Predictor* predictor) {
|
|
return static_cast<int>(predictor->predictor->GetOutputNames().size());
|
|
}
|
|
|
|
const char* PD_GetInputName(const PD_Predictor* predictor, int n) {
|
|
static std::vector<std::string> names = predictor->predictor->GetInputNames();
|
|
return names[n].c_str();
|
|
}
|
|
|
|
const char* PD_GetOutputName(const PD_Predictor* predictor, int n) {
|
|
static std::vector<std::string> names =
|
|
predictor->predictor->GetOutputNames();
|
|
return names[n].c_str();
|
|
}
|
|
|
|
void PD_SetZeroCopyInput(PD_Predictor* predictor,
|
|
const PD_ZeroCopyTensor* tensor) {
|
|
auto input = predictor->predictor->GetInputTensor(tensor->name);
|
|
auto* shape_ptr = static_cast<int*>(tensor->shape.data);
|
|
std::vector<int> shape(shape_ptr,
|
|
shape_ptr + tensor->shape.length / sizeof(int));
|
|
input->Reshape(std::move(shape));
|
|
switch (tensor->dtype) {
|
|
case PD_FLOAT32:
|
|
input->copy_from_cpu(static_cast<float*>(tensor->data.data));
|
|
break;
|
|
case PD_INT32:
|
|
input->copy_from_cpu(static_cast<int32_t*>(tensor->data.data));
|
|
break;
|
|
case PD_INT64:
|
|
input->copy_from_cpu(static_cast<int64_t*>(tensor->data.data));
|
|
break;
|
|
case PD_UINT8:
|
|
input->copy_from_cpu(static_cast<uint8_t*>(tensor->data.data));
|
|
break;
|
|
default:
|
|
PADDLE_THROW(
|
|
paddle::platform::errors::InvalidArgument("Unsupported data type."));
|
|
break;
|
|
}
|
|
|
|
if (tensor->lod.length) {
|
|
auto* lod_ptr = reinterpret_cast<size_t*>(tensor->lod.data);
|
|
std::vector<size_t> lod;
|
|
lod.assign(lod_ptr, lod_ptr + tensor->lod.length / sizeof(size_t));
|
|
input->SetLoD({std::move(lod)});
|
|
}
|
|
}
|
|
|
|
void PD_GetZeroCopyOutput(PD_Predictor* predictor, PD_ZeroCopyTensor* tensor) {
|
|
auto output = predictor->predictor->GetOutputTensor(tensor->name);
|
|
tensor->dtype = ConvertToPDDataType(output->type());
|
|
auto shape = output->shape();
|
|
size_t shape_size = shape.size();
|
|
if (tensor->shape.capacity < shape_size * sizeof(int)) {
|
|
if (tensor->shape.data || tensor->shape.capacity) {
|
|
std::free(tensor->shape.data);
|
|
}
|
|
tensor->shape.data = std::malloc(shape_size * sizeof(int));
|
|
tensor->shape.capacity = shape_size * sizeof(int);
|
|
}
|
|
tensor->shape.length = shape_size * sizeof(int);
|
|
std::copy(shape.begin(), shape.end(), static_cast<int*>(tensor->shape.data));
|
|
|
|
int n =
|
|
std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>());
|
|
size_t length = n * paddle::PaddleDtypeSize(output->type());
|
|
if (tensor->data.capacity < length) {
|
|
if (tensor->data.data) {
|
|
std::free(tensor->data.data);
|
|
}
|
|
tensor->data.data = std::malloc(length);
|
|
tensor->data.capacity = std::move(length);
|
|
}
|
|
tensor->data.length = length;
|
|
|
|
auto lod = output->lod();
|
|
if (!lod.empty()) {
|
|
tensor->lod.length = lod.front().size() * sizeof(size_t);
|
|
if (tensor->lod.capacity < lod.front().size()) {
|
|
if (tensor->lod.data) {
|
|
std::free(tensor->lod.data);
|
|
}
|
|
|
|
tensor->lod.data = std::malloc(lod.front().size() * sizeof(size_t));
|
|
tensor->lod.capacity = lod.front().size() * sizeof(size_t);
|
|
}
|
|
std::copy(lod.front().begin(), lod.front().end(),
|
|
reinterpret_cast<size_t*>(tensor->lod.data));
|
|
}
|
|
switch (tensor->dtype) {
|
|
case PD_FLOAT32:
|
|
output->copy_to_cpu(reinterpret_cast<float*>(tensor->data.data));
|
|
break;
|
|
case PD_INT32:
|
|
output->copy_to_cpu(reinterpret_cast<int32_t*>(tensor->data.data));
|
|
break;
|
|
case PD_INT64:
|
|
output->copy_to_cpu(reinterpret_cast<int64_t*>(tensor->data.data));
|
|
break;
|
|
case PD_UINT8:
|
|
output->copy_to_cpu(reinterpret_cast<uint8_t*>(tensor->data.data));
|
|
break;
|
|
default:
|
|
PADDLE_THROW(
|
|
paddle::platform::errors::InvalidArgument("Unsupported data type."));
|
|
break;
|
|
}
|
|
}
|
|
|
|
void PD_ZeroCopyRun(PD_Predictor* predictor) {
|
|
predictor->predictor->ZeroCopyRun();
|
|
}
|
|
} // extern "C"
|