You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							333 lines
						
					
					
						
							13 KiB
						
					
					
				
			
		
		
	
	
							333 lines
						
					
					
						
							13 KiB
						
					
					
				/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#pragma once
 | 
						|
#include <algorithm>
 | 
						|
#include <limits>
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
#include "paddle/fluid/operators/math/math_function.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
using Tensor = framework::Tensor;
 | 
						|
using LoDTensor = framework::LoDTensor;
 | 
						|
 | 
						|
static constexpr int kROISize = 4;
 | 
						|
 | 
						|
template <class T>
 | 
						|
void PreCalcForBilinearInterpolate(
 | 
						|
    const platform::DeviceContext& ctx, const int height, const int width,
 | 
						|
    const int pooled_height, const int pooled_width, const int iy_upper,
 | 
						|
    const int ix_upper, T roi_ymin, T roi_xmin, T bin_size_h, T bin_size_w,
 | 
						|
    int roi_bin_grid_h, int roi_bin_grid_w, Tensor* pre_pos, Tensor* pre_w) {
 | 
						|
  int pre_calc_index = 0;
 | 
						|
  int* pre_pos_data = pre_pos->mutable_data<int>(ctx.GetPlace());
 | 
						|
  T* pre_w_data = pre_w->mutable_data<T>(ctx.GetPlace());
 | 
						|
  for (int ph = 0; ph < pooled_height; ph++) {
 | 
						|
    for (int pw = 0; pw < pooled_width; pw++) {
 | 
						|
      for (int iy = 0; iy < iy_upper; iy++) {
 | 
						|
        // calculate y of sample points
 | 
						|
        T y = roi_ymin + ph * bin_size_h +
 | 
						|
              static_cast<T>(iy + .5f) * bin_size_h /
 | 
						|
                  static_cast<T>(roi_bin_grid_h);
 | 
						|
        // calculate x of samle points
 | 
						|
        for (int ix = 0; ix < ix_upper; ix++) {
 | 
						|
          T x = roi_xmin + pw * bin_size_w +
 | 
						|
                static_cast<T>(ix + .5f) * bin_size_w /
 | 
						|
                    static_cast<T>(roi_bin_grid_w);
 | 
						|
          // deal with elements out of map
 | 
						|
          if (y < -1.0 || y > height || x < -1.0 || x > width) {
 | 
						|
            for (int i = 0; i < kROISize; ++i) {
 | 
						|
              pre_pos_data[i + pre_calc_index * kROISize] = 0;
 | 
						|
              pre_w_data[i + pre_calc_index * kROISize] = 0;
 | 
						|
            }
 | 
						|
            pre_calc_index += 1;
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
          y = y <= 0 ? 0 : y;
 | 
						|
          x = x <= 0 ? 0 : x;
 | 
						|
 | 
						|
          int y_low = static_cast<int>(y);
 | 
						|
          int x_low = static_cast<int>(x);
 | 
						|
          int y_high;
 | 
						|
          int x_high;
 | 
						|
          if (y_low >= height - 1) {
 | 
						|
            y_high = y_low = height - 1;
 | 
						|
            y = static_cast<T>(y_low);
 | 
						|
          } else {
 | 
						|
            y_high = y_low + 1;
 | 
						|
          }
 | 
						|
          if (x_low >= width - 1) {
 | 
						|
            x_high = x_low = width - 1;
 | 
						|
            x = static_cast<T>(x_low);
 | 
						|
          } else {
 | 
						|
            x_high = x_low + 1;
 | 
						|
          }
 | 
						|
          T ly = y - y_low, lx = x - x_low;
 | 
						|
          T hy = 1. - ly, hx = 1. - lx;
 | 
						|
          pre_pos_data[pre_calc_index * kROISize] = y_low * width + x_low;
 | 
						|
          pre_pos_data[pre_calc_index * kROISize + 1] = y_low * width + x_high;
 | 
						|
          pre_pos_data[pre_calc_index * kROISize + 2] = y_high * width + x_low;
 | 
						|
          pre_pos_data[pre_calc_index * kROISize + 3] = y_high * width + x_high;
 | 
						|
          pre_w_data[pre_calc_index * kROISize] = hy * hx;
 | 
						|
          pre_w_data[pre_calc_index * kROISize + 1] = hy * lx;
 | 
						|
          pre_w_data[pre_calc_index * kROISize + 2] = ly * hx;
 | 
						|
          pre_w_data[pre_calc_index * kROISize + 3] = ly * lx;
 | 
						|
          pre_calc_index += 1;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
void bilinear_interpolate_gradient(const int height, const int width, T y, T x,
 | 
						|
                                   const T out_grad_this_bin, const T count,
 | 
						|
                                   T* batch_grad_data) {
 | 
						|
  int x_low, y_low, x_high, y_high;
 | 
						|
  T w1, w2, w3, w4;
 | 
						|
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
 | 
						|
    w1 = w2 = w3 = w4 = 0;
 | 
						|
    x_low = x_high = y_low = y_high = -1;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  y = y <= 0 ? 0 : y;
 | 
						|
  x = x <= 0 ? 0 : x;
 | 
						|
  y_low = static_cast<int>(y);
 | 
						|
  x_low = static_cast<int>(x);
 | 
						|
  if (y_low >= height - 1) {
 | 
						|
    y_high = y_low = height - 1;
 | 
						|
    y = static_cast<T>(y_low);
 | 
						|
  } else {
 | 
						|
    y_high = y_low + 1;
 | 
						|
  }
 | 
						|
 | 
						|
  if (x_low >= width - 1) {
 | 
						|
    x_high = x_low = width - 1;
 | 
						|
    x = static_cast<T>(x_low);
 | 
						|
  } else {
 | 
						|
    x_high = x_low + 1;
 | 
						|
  }
 | 
						|
 | 
						|
  T ly = y - y_low, lx = x - x_low;
 | 
						|
  T hy = 1. - ly, hx = 1. - lx;
 | 
						|
  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
 | 
						|
  T diff1 = out_grad_this_bin * w1 / count;
 | 
						|
  T diff2 = out_grad_this_bin * w2 / count;
 | 
						|
  T diff3 = out_grad_this_bin * w3 / count;
 | 
						|
  T diff4 = out_grad_this_bin * w4 / count;
 | 
						|
  if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
 | 
						|
    *(batch_grad_data + y_low * width + x_low) += diff1;
 | 
						|
    *(batch_grad_data + y_low * width + x_high) += diff2;
 | 
						|
    *(batch_grad_data + y_high * width + x_low) += diff3;
 | 
						|
    *(batch_grad_data + y_high * width + x_high) += diff4;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename DeviceContext, typename T>
 | 
						|
class CPUROIAlignOpKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& ctx) const override {
 | 
						|
    auto* in = ctx.Input<framework::Tensor>("X");
 | 
						|
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
 | 
						|
    auto* out = ctx.Output<framework::Tensor>("Out");
 | 
						|
    auto pooled_height = ctx.Attr<int>("pooled_height");
 | 
						|
    auto pooled_width = ctx.Attr<int>("pooled_width");
 | 
						|
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
 | 
						|
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
 | 
						|
 | 
						|
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
 | 
						|
 | 
						|
    auto in_dims = in->dims();
 | 
						|
    int batch_size = in_dims[0];
 | 
						|
    int channels = in_dims[1];
 | 
						|
    int height = in_dims[2];
 | 
						|
    int width = in_dims[3];
 | 
						|
    int rois_num = rois->dims()[0];
 | 
						|
 | 
						|
    auto in_stride = framework::stride(in_dims);
 | 
						|
    auto roi_stride = framework::stride(rois->dims());
 | 
						|
    auto out_stride = framework::stride(out->dims());
 | 
						|
 | 
						|
    const T* input_data = in->data<T>();
 | 
						|
    framework::Tensor roi_batch_id_list;
 | 
						|
    roi_batch_id_list.Resize({rois_num});
 | 
						|
    int* roi_batch_id_data =
 | 
						|
        roi_batch_id_list.mutable_data<int>(ctx.GetPlace());
 | 
						|
 | 
						|
    auto rois_lod = rois->lod().back();
 | 
						|
    int rois_batch_size = rois_lod.size() - 1;
 | 
						|
    PADDLE_ENFORCE_EQ(
 | 
						|
        rois_batch_size, batch_size,
 | 
						|
        "The rois_batch_size and imgs batch_size must be the same.");
 | 
						|
    int rois_num_with_lod = rois_lod[rois_batch_size];
 | 
						|
    PADDLE_ENFORCE_EQ(rois_num, rois_num_with_lod,
 | 
						|
                      "The rois_num from input and lod must be the same.");
 | 
						|
    for (int n = 0; n < rois_batch_size; ++n) {
 | 
						|
      for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
 | 
						|
        roi_batch_id_data[i] = n;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    T* output_data = out->mutable_data<T>(ctx.GetPlace());
 | 
						|
    const T* rois_data = rois->data<T>();
 | 
						|
    for (int n = 0; n < rois_num; ++n) {
 | 
						|
      int roi_batch_id = roi_batch_id_data[n];
 | 
						|
      T roi_xmin = rois_data[0] * spatial_scale;
 | 
						|
      T roi_ymin = rois_data[1] * spatial_scale;
 | 
						|
      T roi_xmax = rois_data[2] * spatial_scale;
 | 
						|
      T roi_ymax = rois_data[3] * spatial_scale;
 | 
						|
 | 
						|
      T roi_width = std::max(roi_xmax - roi_xmin, static_cast<T>(1.));
 | 
						|
      T roi_height = std::max(roi_ymax - roi_ymin, static_cast<T>(1.));
 | 
						|
      T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
 | 
						|
      T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
 | 
						|
      const T* batch_data = input_data + roi_batch_id * in_stride[0];
 | 
						|
 | 
						|
      int roi_bin_grid_h = (sampling_ratio > 0)
 | 
						|
                               ? sampling_ratio
 | 
						|
                               : ceil(roi_height / pooled_height);
 | 
						|
      int roi_bin_grid_w = (sampling_ratio > 0)
 | 
						|
                               ? sampling_ratio
 | 
						|
                               : ceil(roi_width / pooled_width);
 | 
						|
      const T count = roi_bin_grid_h * roi_bin_grid_w;
 | 
						|
      Tensor pre_pos;
 | 
						|
      Tensor pre_w;
 | 
						|
      int pre_size = count * out_stride[1];
 | 
						|
      pre_pos.Resize({pre_size, kROISize});
 | 
						|
      pre_w.Resize({pre_size, kROISize});
 | 
						|
 | 
						|
      PreCalcForBilinearInterpolate(
 | 
						|
          dev_ctx, height, width, pooled_height, pooled_width, roi_bin_grid_h,
 | 
						|
          roi_bin_grid_w, roi_ymin, roi_xmin, bin_size_h, bin_size_w,
 | 
						|
          roi_bin_grid_h, roi_bin_grid_w, &pre_pos, &pre_w);
 | 
						|
      const int* pre_pos_data = pre_pos.data<int>();
 | 
						|
      const T* pre_w_data = pre_w.data<T>();
 | 
						|
      for (int c = 0; c < channels; c++) {
 | 
						|
        int pre_calc_index = 0;
 | 
						|
        for (int ph = 0; ph < pooled_height; ph++) {
 | 
						|
          for (int pw = 0; pw < pooled_width; pw++) {
 | 
						|
            const int pool_index = ph * pooled_width + pw;
 | 
						|
            T output_val = 0;
 | 
						|
            for (int iy = 0; iy < roi_bin_grid_h; iy++) {
 | 
						|
              for (int ix = 0; ix < roi_bin_grid_w; ix++) {
 | 
						|
                for (int i = 0; i < kROISize; i++) {
 | 
						|
                  int pos = pre_pos_data[pre_calc_index * kROISize + i];
 | 
						|
                  T w = pre_w_data[pre_calc_index * kROISize + i];
 | 
						|
                  output_val += w * batch_data[pos];
 | 
						|
                }
 | 
						|
                pre_calc_index += 1;
 | 
						|
              }
 | 
						|
            }
 | 
						|
            output_val /= count;
 | 
						|
            output_data[pool_index] = output_val;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        batch_data += in_stride[1];
 | 
						|
        output_data += out_stride[1];
 | 
						|
      }
 | 
						|
      rois_data += roi_stride[0];
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename DeviceContext, typename T>
 | 
						|
class CPUROIAlignGradOpKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& ctx) const override {
 | 
						|
    auto* in = ctx.Input<framework::Tensor>("X");
 | 
						|
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
 | 
						|
    auto* out_grad =
 | 
						|
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
 | 
						|
    auto* in_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
 | 
						|
 | 
						|
    auto pooled_height = ctx.Attr<int>("pooled_height");
 | 
						|
    auto pooled_width = ctx.Attr<int>("pooled_width");
 | 
						|
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
 | 
						|
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
 | 
						|
    auto in_dims = in->dims();
 | 
						|
    if (!in_grad) {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    int channels = in_dims[1];
 | 
						|
    int height = in_dims[2];
 | 
						|
    int width = in_dims[3];
 | 
						|
    int rois_num = rois->dims()[0];
 | 
						|
    Tensor roi_batch_id_list;
 | 
						|
    roi_batch_id_list.Resize({rois_num});
 | 
						|
    int* roi_batch_id_data =
 | 
						|
        roi_batch_id_list.mutable_data<int>(ctx.GetPlace());
 | 
						|
 | 
						|
    auto rois_lod = rois->lod().back();
 | 
						|
    int rois_batch_size = rois_lod.size() - 1;
 | 
						|
    for (int n = 0; n < rois_batch_size; ++n) {
 | 
						|
      for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
 | 
						|
        roi_batch_id_data[i] = n;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    const T* rois_data = rois->data<T>();
 | 
						|
    const T* out_grad_data = out_grad->data<T>();
 | 
						|
    T* in_grad_data = in_grad->mutable_data<T>(ctx.GetPlace());
 | 
						|
 | 
						|
    auto in_stride = framework::stride(in->dims());
 | 
						|
    auto roi_stride = framework::stride(rois->dims());
 | 
						|
    auto out_stride = framework::stride(out_grad->dims());
 | 
						|
 | 
						|
    for (int n = 0; n < rois_num; ++n) {
 | 
						|
      int roi_batch_idx = roi_batch_id_data[n];
 | 
						|
      T roi_xmin = rois_data[0] * spatial_scale;
 | 
						|
      T roi_ymin = rois_data[1] * spatial_scale;
 | 
						|
      T roi_xmax = rois_data[2] * spatial_scale;
 | 
						|
      T roi_ymax = rois_data[3] * spatial_scale;
 | 
						|
      T roi_width = std::max(roi_xmax - roi_xmin, static_cast<T>(1.));
 | 
						|
      T roi_height = std::max(roi_ymax - roi_ymin, static_cast<T>(1.));
 | 
						|
      T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
 | 
						|
      T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
 | 
						|
      for (int c = 0; c < channels; ++c) {
 | 
						|
        T* batch_grad_data =
 | 
						|
            in_grad_data + roi_batch_idx * in_stride[0] + c * in_stride[1];
 | 
						|
        const T* batch_out_grad_data =
 | 
						|
            out_grad_data + n * out_stride[0] + c * out_stride[1];
 | 
						|
        for (int ph = 0; ph < pooled_height; ++ph) {
 | 
						|
          for (int pw = 0; pw < pooled_width; ++pw) {
 | 
						|
            int pool_index = ph * pooled_width + pw;
 | 
						|
            T out_grad_this_bin = batch_out_grad_data[pool_index];
 | 
						|
            int roi_bin_grid_h = (sampling_ratio > 0)
 | 
						|
                                     ? sampling_ratio
 | 
						|
                                     : ceil(roi_height / pooled_height);
 | 
						|
            int roi_bin_grid_w = (sampling_ratio > 0)
 | 
						|
                                     ? sampling_ratio
 | 
						|
                                     : ceil(roi_width / pooled_width);
 | 
						|
            T count = roi_bin_grid_h * roi_bin_grid_w;
 | 
						|
            for (int iy = 0; iy < roi_bin_grid_h; iy++) {
 | 
						|
              const T y = roi_ymin + ph * bin_size_h +
 | 
						|
                          static_cast<T>(iy + .5f) * bin_size_h /
 | 
						|
                              static_cast<T>(roi_bin_grid_h);
 | 
						|
              for (int ix = 0; ix < roi_bin_grid_w; ix++) {
 | 
						|
                const T x = roi_xmin + pw * bin_size_w +
 | 
						|
                            static_cast<T>(ix + .5f) * bin_size_w /
 | 
						|
                                static_cast<T>(roi_bin_grid_w);
 | 
						|
                bilinear_interpolate_gradient(height, width, y, x,
 | 
						|
                                              out_grad_this_bin, count,
 | 
						|
                                              batch_grad_data);
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      rois_data += roi_stride[0];
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 |