You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
178 lines
7.3 KiB
178 lines
7.3 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from .optimizer import Optimizer
|
|
from ..fluid import core
|
|
from ..fluid import framework
|
|
from ..fluid.framework import Variable
|
|
|
|
__all__ = ["Lamb"]
|
|
|
|
|
|
class Lamb(Optimizer):
|
|
"""
|
|
LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.
|
|
|
|
LAMB Optimizer is designed to scale up the batch size of training without losing
|
|
accuracy, which supports adaptive element-wise updating and accurate layer-wise
|
|
correction. For more information, please refer to `Large Batch Optimization for
|
|
Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
|
|
|
|
The updating of parameters follows:
|
|
|
|
.. math::
|
|
|
|
m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t
|
|
|
|
v_t &= \\beta_2 v_{t - 1} + (1 - \\beta_2)g_t^2
|
|
|
|
r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
|
|
|
|
w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
|
|
|
|
|
|
where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the
|
|
learning rate, :math:`\\lambda` the LAMB weight decay rate.
|
|
|
|
Args:
|
|
learning_rate (float|Variable, optional): the learning rate used to update parameters. \
|
|
Can be a float value or a Variable with data type float32. Default 0.001.
|
|
lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01. Remind that weight_decay should be None.
|
|
beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
|
|
Default 0.9.
|
|
beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
|
|
Default 0.999.
|
|
epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
|
|
parameters (Iterable, optional): Iterable of ``Variable`` names to update to minimize ``loss``. \
|
|
This parameter is required in dygraph mode. \
|
|
The default value is None in static mode, at this time all parameters will be updated.
|
|
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
|
|
some derived class of ``GradientClipBase`` . There are three cliping strategies
|
|
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
|
|
:ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
|
|
name(str|None): For detailed information, please refer to
|
|
:ref:`api_guide_Name` . Usually name is no need to set and None by default.
|
|
Examples:
|
|
.. code-block:: python
|
|
import paddle
|
|
import numpy as np
|
|
inp = paddle.uniform(min=-0.1, max=0.1, shape=[10, 10], dtype='float32')
|
|
linear = paddle.nn.Linear(10, 10)
|
|
out = linear(inp)
|
|
loss = paddle.mean(out)
|
|
beta1 = paddle.to_tensor([0.9], dtype="float32")
|
|
beta2 = paddle.to_tensor([0.85], dtype="float32")
|
|
lamb = paddle.optimizer.Lamb(learning_rate=0.002, parameters=linear.parameters(), lamb_weight_decay=0.01)
|
|
back = out.backward()
|
|
lamb.step()
|
|
lamb.clear_grad()
|
|
"""
|
|
_moment1_acc_str = "moment1"
|
|
_moment2_acc_str = "moment2"
|
|
# these two not used in op temporarily
|
|
_beta1_pow_acc_str = "beta1_pow_acc"
|
|
_beta2_pow_acc_str = "beta2_pow_acc"
|
|
|
|
def __init__(self,
|
|
learning_rate=0.001,
|
|
lamb_weight_decay=0.01,
|
|
beta1=0.9,
|
|
beta2=0.999,
|
|
epsilon=1e-6,
|
|
parameters=None,
|
|
grad_clip=None,
|
|
name=None):
|
|
assert learning_rate is not None
|
|
assert beta1 is not None
|
|
assert beta2 is not None
|
|
assert epsilon is not None
|
|
super(Lamb, self).__init__(
|
|
learning_rate=learning_rate,
|
|
parameters=parameters,
|
|
weight_decay=None,
|
|
grad_clip=grad_clip,
|
|
name=name)
|
|
self.type = "lamb"
|
|
self._beta1 = beta1
|
|
self._beta2 = beta2
|
|
self._epsilon = epsilon
|
|
self._lamb_weight_decay = lamb_weight_decay
|
|
|
|
def _create_accumulators(self, block, parameters):
|
|
assert isinstance(block, framework.Block)
|
|
|
|
# Create accumulator tensors for first and second moments
|
|
for p in parameters:
|
|
self._add_accumulator(self._moment1_acc_str, p)
|
|
self._add_accumulator(self._moment2_acc_str, p)
|
|
self._add_accumulator(
|
|
name=self._beta1_pow_acc_str,
|
|
param=p,
|
|
fill_value=0.9 if isinstance(self._beta1, Variable) \
|
|
else self._beta1,
|
|
shape=[1],
|
|
type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
|
|
self._add_accumulator(
|
|
name=self._beta2_pow_acc_str,
|
|
param=p,
|
|
fill_value=0.999 if isinstance(self._beta2, Variable) \
|
|
else self._beta2,
|
|
shape=[1],
|
|
type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
|
|
|
|
def _append_optimize_op(self, block, param_and_grad):
|
|
assert isinstance(block, framework.Block)
|
|
block.program._use_lamb = True
|
|
|
|
moment1 = self._get_accumulator(self._moment1_acc_str,
|
|
param_and_grad[0])
|
|
moment2 = self._get_accumulator(self._moment2_acc_str,
|
|
param_and_grad[0])
|
|
beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
|
|
param_and_grad[0])
|
|
beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
|
|
param_and_grad[0])
|
|
|
|
if param_and_grad[0].need_clip:
|
|
weight_decay = 0.0
|
|
else:
|
|
weight_decay = self._lamb_weight_decay
|
|
|
|
# create the lamb optimize op
|
|
lamb_op = block.append_op(
|
|
type=self.type,
|
|
inputs={
|
|
"Param": param_and_grad[0],
|
|
"Grad": param_and_grad[1],
|
|
"LearningRate": self._create_param_lr(param_and_grad),
|
|
"Moment1": moment1,
|
|
"Moment2": moment2,
|
|
"Beta1Pow": beta1_pow_acc,
|
|
"Beta2Pow": beta2_pow_acc
|
|
},
|
|
outputs={
|
|
"ParamOut": param_and_grad[0],
|
|
"Moment1Out": moment1,
|
|
"Moment2Out": moment2
|
|
},
|
|
attrs={
|
|
"beta1": self._beta1,
|
|
"beta2": self._beta2,
|
|
"epsilon": self._epsilon,
|
|
"weight_decay": weight_decay
|
|
},
|
|
stop_gradient=True)
|
|
|
|
return lamb_op
|