You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							69 lines
						
					
					
						
							2.5 KiB
						
					
					
				
			
		
		
	
	
							69 lines
						
					
					
						
							2.5 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
#include <thrust/random.h>
 | 
						|
#include <thrust/transform.h>
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
#include "paddle/fluid/framework/operator.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
template <typename T>
 | 
						|
struct GaussianGenerator {
 | 
						|
  T mean_, std_;
 | 
						|
  unsigned int seed_;
 | 
						|
 | 
						|
  __host__ __device__ GaussianGenerator(T mean, T std, int seed)
 | 
						|
      : mean_(mean), std_(std), seed_(seed) {}
 | 
						|
 | 
						|
  __host__ __device__ T operator()(const unsigned int n) const {
 | 
						|
    thrust::minstd_rand rng;
 | 
						|
    rng.seed(seed_);
 | 
						|
    thrust::normal_distribution<T> dist(mean_, std_);
 | 
						|
    rng.discard(n);
 | 
						|
    return dist(rng);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class GPUGaussianRandomKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& context) const override {
 | 
						|
    auto* tensor = context.Output<framework::Tensor>("Out");
 | 
						|
    T* data = tensor->mutable_data<T>(context.GetPlace());
 | 
						|
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
 | 
						|
    if (seed == 0) {
 | 
						|
      std::random_device rd;
 | 
						|
      seed = rd();
 | 
						|
    }
 | 
						|
    T mean = static_cast<T>(context.Attr<float>("mean"));
 | 
						|
    T std = static_cast<T>(context.Attr<float>("std"));
 | 
						|
    thrust::counting_iterator<unsigned int> index_sequence_begin(0);
 | 
						|
    int64_t size = tensor->numel();
 | 
						|
    thrust::transform(index_sequence_begin, index_sequence_begin + size,
 | 
						|
                      thrust::device_ptr<T>(data),
 | 
						|
                      GaussianGenerator<T>(mean, std, seed));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
REGISTER_OP_CUDA_KERNEL(gaussian_random,
 | 
						|
                        paddle::operators::GPUGaussianRandomKernel<float>,
 | 
						|
                        paddle::operators::GPUGaussianRandomKernel<double>);
 | 
						|
REGISTER_OP_CUDA_KERNEL(gaussian_random_batch_size_like,
 | 
						|
                        paddle::operators::GPUGaussianRandomKernel<float>,
 | 
						|
                        paddle::operators::GPUGaussianRandomKernel<double>);
 |