You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
133 lines
4.4 KiB
133 lines
4.4 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
|
#you may not use this file except in compliance with the License.
|
|
#You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
#Unless required by applicable law or agreed to in writing, software
|
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
#See the License for the specific language governing permissions and
|
|
#limitations under the License.
|
|
import numpy as np
|
|
import paddle.v2 as paddle
|
|
import paddle.v2.fluid as fluid
|
|
import paddle.v2.fluid.core as core
|
|
import paddle.v2.fluid.framework as framework
|
|
import paddle.v2.fluid.layers as layers
|
|
from paddle.v2.fluid.executor import Executor
|
|
|
|
dict_size = 30000
|
|
source_dict_dim = target_dict_dim = dict_size
|
|
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
|
|
hidden_dim = 32
|
|
word_dim = 16
|
|
IS_SPARSE = True
|
|
batch_size = 10
|
|
max_length = 50
|
|
topk_size = 50
|
|
trg_dic_size = 10000
|
|
|
|
decoder_size = hidden_dim
|
|
|
|
|
|
def encoder_decoder():
|
|
# encoder
|
|
src_word_id = layers.data(
|
|
name="src_word_id", shape=[1], dtype='int64', lod_level=1)
|
|
src_embedding = layers.embedding(
|
|
input=src_word_id,
|
|
size=[dict_size, word_dim],
|
|
dtype='float32',
|
|
is_sparse=IS_SPARSE,
|
|
param_attr=fluid.ParamAttr(name='vemb'))
|
|
|
|
fc1 = fluid.layers.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
|
|
lstm_hidden0, lstm_0 = layers.dynamic_lstm(input=fc1, size=hidden_dim * 4)
|
|
encoder_out = layers.sequence_last_step(input=lstm_hidden0)
|
|
|
|
# decoder
|
|
trg_language_word = layers.data(
|
|
name="target_language_word", shape=[1], dtype='int64', lod_level=1)
|
|
trg_embedding = layers.embedding(
|
|
input=trg_language_word,
|
|
size=[dict_size, word_dim],
|
|
dtype='float32',
|
|
is_sparse=IS_SPARSE,
|
|
param_attr=fluid.ParamAttr(name='vemb'))
|
|
|
|
rnn = fluid.layers.DynamicRNN()
|
|
with rnn.block():
|
|
current_word = rnn.step_input(trg_embedding)
|
|
mem = rnn.memory(init=encoder_out)
|
|
fc1 = fluid.layers.fc(input=[current_word, mem],
|
|
size=decoder_size,
|
|
act='tanh')
|
|
out = fluid.layers.fc(input=fc1, size=target_dict_dim, act='softmax')
|
|
rnn.update_memory(mem, fc1)
|
|
rnn.output(out)
|
|
|
|
return rnn()
|
|
|
|
|
|
def to_lodtensor(data, place):
|
|
seq_lens = [len(seq) for seq in data]
|
|
cur_len = 0
|
|
lod = [cur_len]
|
|
for l in seq_lens:
|
|
cur_len += l
|
|
lod.append(cur_len)
|
|
flattened_data = np.concatenate(data, axis=0).astype("int64")
|
|
flattened_data = flattened_data.reshape([len(flattened_data), 1])
|
|
res = core.LoDTensor()
|
|
res.set(flattened_data, place)
|
|
res.set_lod([lod])
|
|
return res
|
|
|
|
|
|
def main():
|
|
rnn_out = encoder_decoder()
|
|
label = layers.data(
|
|
name="target_language_next_word", shape=[1], dtype='int64', lod_level=1)
|
|
cost = layers.cross_entropy(input=rnn_out, label=label)
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4)
|
|
optimizer.minimize(avg_cost)
|
|
|
|
train_data = paddle.batch(
|
|
paddle.reader.shuffle(
|
|
paddle.dataset.wmt14.train(dict_size), buf_size=1000),
|
|
batch_size=batch_size)
|
|
|
|
place = core.CPUPlace()
|
|
exe = Executor(place)
|
|
|
|
exe.run(framework.default_startup_program())
|
|
|
|
batch_id = 0
|
|
for pass_id in xrange(2):
|
|
for data in train_data():
|
|
word_data = to_lodtensor(map(lambda x: x[0], data), place)
|
|
trg_word = to_lodtensor(map(lambda x: x[1], data), place)
|
|
trg_word_next = to_lodtensor(map(lambda x: x[2], data), place)
|
|
outs = exe.run(framework.default_main_program(),
|
|
feed={
|
|
'src_word_id': word_data,
|
|
'target_language_word': trg_word,
|
|
'target_language_next_word': trg_word_next
|
|
},
|
|
fetch_list=[avg_cost])
|
|
avg_cost_val = np.array(outs[0])
|
|
print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
|
|
" avg_cost=" + str(avg_cost_val))
|
|
if batch_id > 3:
|
|
exit(0)
|
|
batch_id += 1
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|