You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
222 lines
6.8 KiB
222 lines
6.8 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
|
#you may not use this file except in compliance with the License.
|
|
#You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
#Unless required by applicable law or agreed to in writing, software
|
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
#See the License for the specific language governing permissions and
|
|
#limitations under the License.
|
|
import numpy as np
|
|
import paddle.v2 as paddle
|
|
import paddle.v2.fluid.core as core
|
|
import paddle.v2.fluid.framework as framework
|
|
import paddle.v2.fluid.layers as layers
|
|
import paddle.v2.fluid.nets as nets
|
|
from paddle.v2.fluid.executor import Executor
|
|
from paddle.v2.fluid.optimizer import SGDOptimizer
|
|
|
|
IS_SPARSE = True
|
|
USE_GPU = False
|
|
BATCH_SIZE = 256
|
|
|
|
|
|
def get_usr_combined_features():
|
|
# FIXME(dzh) : old API integer_value(10) may has range check.
|
|
# currently we don't have user configurated check.
|
|
|
|
USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1
|
|
|
|
uid = layers.data(name='user_id', shape=[1], dtype='int64')
|
|
|
|
usr_emb = layers.embedding(
|
|
input=uid,
|
|
dtype='float32',
|
|
size=[USR_DICT_SIZE, 32],
|
|
param_attr='user_table',
|
|
is_sparse=IS_SPARSE)
|
|
|
|
usr_fc = layers.fc(input=usr_emb, size=32)
|
|
|
|
USR_GENDER_DICT_SIZE = 2
|
|
|
|
usr_gender_id = layers.data(name='gender_id', shape=[1], dtype='int64')
|
|
|
|
usr_gender_emb = layers.embedding(
|
|
input=usr_gender_id,
|
|
size=[USR_GENDER_DICT_SIZE, 16],
|
|
param_attr='gender_table',
|
|
is_sparse=IS_SPARSE)
|
|
|
|
usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)
|
|
|
|
USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
|
|
usr_age_id = layers.data(name='age_id', shape=[1], dtype="int64")
|
|
|
|
usr_age_emb = layers.embedding(
|
|
input=usr_age_id,
|
|
size=[USR_AGE_DICT_SIZE, 16],
|
|
is_sparse=IS_SPARSE,
|
|
param_attr='age_table')
|
|
|
|
usr_age_fc = layers.fc(input=usr_age_emb, size=16)
|
|
|
|
USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
|
|
usr_job_id = layers.data(name='job_id', shape=[1], dtype="int64")
|
|
|
|
usr_job_emb = layers.embedding(
|
|
input=usr_job_id,
|
|
size=[USR_JOB_DICT_SIZE, 16],
|
|
param_attr='job_table',
|
|
is_sparse=IS_SPARSE)
|
|
|
|
usr_job_fc = layers.fc(input=usr_job_emb, size=16)
|
|
|
|
concat_embed = layers.concat(
|
|
input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1)
|
|
|
|
usr_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")
|
|
|
|
return usr_combined_features
|
|
|
|
|
|
def get_mov_combined_features():
|
|
|
|
MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1
|
|
|
|
mov_id = layers.data(name='movie_id', shape=[1], dtype='int64')
|
|
|
|
mov_emb = layers.embedding(
|
|
input=mov_id,
|
|
dtype='float32',
|
|
size=[MOV_DICT_SIZE, 32],
|
|
param_attr='movie_table',
|
|
is_sparse=IS_SPARSE)
|
|
|
|
mov_fc = layers.fc(input=mov_emb, size=32)
|
|
|
|
CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())
|
|
|
|
category_id = layers.data(name='category_id', shape=[1], dtype='int64')
|
|
|
|
mov_categories_emb = layers.embedding(
|
|
input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE)
|
|
|
|
mov_categories_hidden = layers.sequence_pool(
|
|
input=mov_categories_emb, pool_type="sum")
|
|
|
|
MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())
|
|
|
|
mov_title_id = layers.data(name='movie_title', shape=[1], dtype='int64')
|
|
|
|
mov_title_emb = layers.embedding(
|
|
input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE)
|
|
|
|
mov_title_conv = nets.sequence_conv_pool(
|
|
input=mov_title_emb,
|
|
num_filters=32,
|
|
filter_size=3,
|
|
act="tanh",
|
|
pool_type="sum")
|
|
|
|
concat_embed = layers.concat(
|
|
input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1)
|
|
|
|
# FIXME(dzh) : need tanh operator
|
|
mov_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")
|
|
|
|
return mov_combined_features
|
|
|
|
|
|
def model():
|
|
usr_combined_features = get_usr_combined_features()
|
|
mov_combined_features = get_mov_combined_features()
|
|
|
|
# need cos sim
|
|
inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features)
|
|
scale_infer = layers.scale(x=inference, scale=5.0)
|
|
|
|
label = layers.data(name='score', shape=[1], dtype='float32')
|
|
|
|
square_cost = layers.square_error_cost(input=scale_infer, label=label)
|
|
|
|
avg_cost = layers.mean(x=square_cost)
|
|
|
|
return avg_cost
|
|
|
|
|
|
def main():
|
|
cost = model()
|
|
sgd_optimizer = SGDOptimizer(learning_rate=0.2)
|
|
opts = sgd_optimizer.minimize(cost)
|
|
|
|
if USE_GPU:
|
|
place = core.CUDAPlace(0)
|
|
else:
|
|
place = core.CPUPlace()
|
|
|
|
exe = Executor(place)
|
|
exe.run(framework.default_startup_program())
|
|
|
|
train_reader = paddle.batch(
|
|
paddle.reader.shuffle(
|
|
paddle.dataset.movielens.train(), buf_size=8192),
|
|
batch_size=BATCH_SIZE)
|
|
|
|
feeding = {
|
|
'user_id': 0,
|
|
'gender_id': 1,
|
|
'age_id': 2,
|
|
'job_id': 3,
|
|
'movie_id': 4,
|
|
'category_id': 5,
|
|
'movie_title': 6,
|
|
'score': 7
|
|
}
|
|
|
|
def func_feed(feeding, data):
|
|
feed_tensors = {}
|
|
for (key, idx) in feeding.iteritems():
|
|
tensor = core.LoDTensor()
|
|
if key != "category_id" and key != "movie_title":
|
|
if key == "score":
|
|
numpy_data = np.array(map(lambda x: x[idx], data)).astype(
|
|
"float32")
|
|
else:
|
|
numpy_data = np.array(map(lambda x: x[idx], data)).astype(
|
|
"int64")
|
|
else:
|
|
numpy_data = map(lambda x: np.array(x[idx]).astype("int64"),
|
|
data)
|
|
lod_info = [len(item) for item in numpy_data]
|
|
offset = 0
|
|
lod = [offset]
|
|
for item in lod_info:
|
|
offset += item
|
|
lod.append(offset)
|
|
numpy_data = np.concatenate(numpy_data, axis=0)
|
|
tensor.set_lod([lod])
|
|
|
|
numpy_data = numpy_data.reshape([numpy_data.shape[0], 1])
|
|
tensor.set(numpy_data, place)
|
|
feed_tensors[key] = tensor
|
|
return feed_tensors
|
|
|
|
PASS_NUM = 100
|
|
for pass_id in range(PASS_NUM):
|
|
for data in train_reader():
|
|
outs = exe.run(framework.default_main_program(),
|
|
feed=func_feed(feeding, data),
|
|
fetch_list=[cost])
|
|
out = np.array(outs[0])
|
|
if out[0] < 6.0:
|
|
# if avg cost less than 6.0, we think our code is good.
|
|
exit(0)
|
|
|
|
|
|
main()
|