You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
155 lines
5.0 KiB
155 lines
5.0 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <paddle/framework/attr_checker.h>
|
|
#include <paddle/framework/op_desc.pb.h>
|
|
#include <paddle/framework/scope.h>
|
|
#include <paddle/platform/device_context.h>
|
|
#include <paddle/platform/place.h>
|
|
#include <paddle/utils/Error.h>
|
|
#include <boost/variant.hpp>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
class OperatorBase;
|
|
|
|
/**
|
|
* OperatorBase has the basic element that Net will call to do computation.
|
|
* Only CreateOperator from OpRegistry will new Operator directly. User
|
|
* should always construct a proto message OpDesc and call
|
|
* OpRegistry::CreateOp(op_desc) to get an Operator instance.
|
|
*/
|
|
class OperatorBase {
|
|
public:
|
|
virtual ~OperatorBase() {}
|
|
|
|
template <typename T>
|
|
inline const T& GetAttr(const std::string& name) const {
|
|
PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
|
|
name);
|
|
return boost::get<T>(attrs_.at(name));
|
|
}
|
|
|
|
std::string DebugString() const;
|
|
|
|
/// Init will be called after CreateOperator, you can put some initialization
|
|
/// logic here.
|
|
virtual void Init() {}
|
|
|
|
/// InferShape infer the size of Variables used by this Operator with
|
|
/// information inside scope
|
|
virtual void InferShape(const std::shared_ptr<Scope>& scope) const = 0;
|
|
|
|
/// Net will call this function to Run an op.
|
|
virtual void Run(const std::shared_ptr<Scope>& scope,
|
|
const platform::DeviceContext& dev_ctx) const = 0;
|
|
|
|
protected:
|
|
std::string Type() const { return desc_.type(); }
|
|
|
|
public:
|
|
OpDesc desc_;
|
|
std::vector<std::string> inputs_;
|
|
std::vector<std::string> outputs_;
|
|
AttributeMap attrs_;
|
|
};
|
|
|
|
class OpKernel {
|
|
public:
|
|
/**
|
|
* KernelContext is the only parameter of Kernel Run function.
|
|
* Run will get input/output variables, state such as momentum and
|
|
* device resource such as CUDA stream, cublas handle, etc. from
|
|
* KernelContext. User should construct it before run the Operator.
|
|
*/
|
|
class KernelContext {
|
|
public:
|
|
KernelContext(const OperatorBase* op, const std::shared_ptr<Scope>& scope,
|
|
const platform::DeviceContext& device_context)
|
|
: op_(*op), scope_(scope), device_context_(device_context) {}
|
|
|
|
const Variable* Input(int index) const {
|
|
return scope_->GetVariable(op_.inputs_[index]);
|
|
}
|
|
|
|
Variable* Output(int index) const {
|
|
return scope_->GetVariable(op_.outputs_[index]);
|
|
}
|
|
|
|
const OperatorBase& op_;
|
|
const std::shared_ptr<Scope>& scope_;
|
|
const platform::DeviceContext& device_context_;
|
|
};
|
|
|
|
virtual void Compute(const KernelContext& context) const = 0;
|
|
|
|
virtual ~OpKernel() {}
|
|
};
|
|
|
|
class OperatorWithKernel : public OperatorBase {
|
|
public:
|
|
struct OpKernelKey {
|
|
platform::Place place_;
|
|
|
|
OpKernelKey() = default;
|
|
OpKernelKey(const platform::DeviceContext& dev_ctx) {
|
|
place_ = dev_ctx.GetPlace();
|
|
}
|
|
|
|
bool operator==(const OpKernelKey& o) const { return place_ == o.place_; }
|
|
};
|
|
|
|
struct OpKernelHash {
|
|
std::hash<bool> hash_;
|
|
size_t operator()(const OpKernelKey& key) const {
|
|
return hash_(platform::is_gpu_place(key.place_));
|
|
}
|
|
};
|
|
|
|
using OpKernelMap =
|
|
std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
|
|
|
|
void Run(const std::shared_ptr<Scope>& scope,
|
|
const platform::DeviceContext& dev_ctx) const final {
|
|
auto& opKernel = AllOpKernels().at(Type()).at(OpKernelKey(dev_ctx));
|
|
opKernel->Compute(OpKernel::KernelContext(this, scope, dev_ctx));
|
|
}
|
|
|
|
static std::unordered_map<std::string /* op_type */, OpKernelMap>&
|
|
AllOpKernels() {
|
|
static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
|
|
return g_all_op_kernels;
|
|
};
|
|
};
|
|
|
|
} // namespace framework
|
|
} // namespace paddle
|
|
|
|
#define REGISTER_OP_KERNEL(type, PlaceType, KernelType) \
|
|
struct __op_kernel_register__##type##__ { \
|
|
__op_kernel_register__##type##__() { \
|
|
::paddle::framework::OperatorWithKernel::OpKernelKey key; \
|
|
key.place_ = PlaceType(); \
|
|
::paddle::framework::OperatorWithKernel::AllOpKernels()[#type][key] \
|
|
.reset(new KernelType()); \
|
|
} \
|
|
}; \
|
|
static __op_kernel_register__##type##__ __reg_kernel_##type##__
|