You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
100 lines
4.0 KiB
100 lines
4.0 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
Indicesou may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/spp_op.h"
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class SppOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
SppOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput(
|
|
"X",
|
|
"(Tensor) The input tensor of spp operator. "
|
|
"The format of input tensor is NCHW. Where N is batch size, C is the "
|
|
"number of channels, H and W is the height and width of feature.");
|
|
AddOutput("Out",
|
|
"(Tensor) The output tensor of spp operator."
|
|
"N * M."
|
|
"M = C * H * W");
|
|
AddAttr<int>("pyramid_height", "(int), multi level pooling");
|
|
AddAttr<std::string>(
|
|
"pooling_type",
|
|
"(string), pooling type, can be \"max\" for max-pooling "
|
|
"and \"avg\" for average-pooling.")
|
|
.InEnum({"max", "avg"});
|
|
AddComment(R"DOC(
|
|
"With spatial pyramid pooling, the input image can
|
|
be of any sizes. This not only allows arbitrary aspect
|
|
ratios, but also allows arbitrary scales. We can resize
|
|
the input image to any scale (e.g., min(w, h)=180, 224,
|
|
...) and apply the same deep network. When the
|
|
input image is at different scales, the network (with
|
|
the same filter sizes) will extract features at different
|
|
scales. The scales play important roles in traditional
|
|
methods.
|
|
Input shape: $(N, C_{in}, H_{in}, W_{in})$
|
|
Output shape: $(H_{out}, W_{out})$
|
|
Where
|
|
$$
|
|
H_{out} = N \\
|
|
W_{out} = (((4^pyramid_height) - 1) / (4 - 1))$ * C_{in}
|
|
$$
|
|
paper https://arxiv.org/pdf/1406.4729v4.pdf
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class SppOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of SppOp"
|
|
"should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of SppOp should not be null.");
|
|
auto in_x_dims = ctx->GetInputDim("X");
|
|
int pyramid_height = ctx->Attrs().Get<int>("pyramid_height");
|
|
PADDLE_ENFORCE(in_x_dims.size() == 4,
|
|
"Spping intput must be of 4-dimensional.");
|
|
int outlen = ((std::pow(4, pyramid_height) - 1) / (4 - 1)) * in_x_dims[1];
|
|
std::vector<int64_t> output_shape({in_x_dims[0], outlen});
|
|
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
|
|
}
|
|
};
|
|
|
|
class SppOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
|
|
"Input(X@GRAD) should not be null.");
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(spp, ops::SppOp, ops::SppOpMaker, spp_grad, ops::SppOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
spp, ops::SppKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SppKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
spp_grad, ops::SppGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SppGradKernel<paddle::platform::CPUDeviceContext, double>);
|