You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/ctr_dataset_reader.py

183 lines
5.3 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import logging
import tarfile
import tempfile
import random
import warnings
import paddle
import paddle.distributed.fleet as fleet
logging.basicConfig()
logger = logging.getLogger("paddle")
logger.setLevel(logging.INFO)
DATA_URL = "http://paddle-ctr-data.bj.bcebos.com/avazu_ctr_data.tgz"
DATA_MD5 = "c11df99fbd14e53cd4bfa6567344b26e"
"""
avazu_ctr_data/train.txt
avazu_ctr_data/infer.txt
avazu_ctr_data/test.txt
avazu_ctr_data/data.meta.txt
"""
def download_file():
file_name = "avazu_ctr_data"
path = paddle.dataset.common.download(DATA_URL, file_name, DATA_MD5)
dir_name = os.path.dirname(path)
text_file_dir_name = os.path.join(dir_name, file_name)
if not os.path.exists(text_file_dir_name):
tar = tarfile.open(path, "r:gz")
tar.extractall(dir_name)
return text_file_dir_name
def load_dnn_input_record(sent):
return list(map(int, sent.split()))
def load_lr_input_record(sent):
res = []
for _ in [x.split(':') for x in sent.split()]:
res.append(int(_[0]) % 10000)
return res
class CtrReader(object):
def __init__(self):
pass
def _reader_creator(self, filelist):
def get_rand(low=0.0, high=1.0):
return random.random()
def reader():
for file in filelist:
with open(file, 'r') as f:
for line in f:
if get_rand() < 0.05:
fs = line.strip().split('\t')
dnn_input = load_dnn_input_record(fs[0])
lr_input = load_lr_input_record(fs[1])
click = [int(fs[2])]
yield [dnn_input] + [lr_input] + [click]
return reader
class DatasetCtrReader(fleet.MultiSlotDataGenerator):
def generate_sample(self, line):
def get_rand(low=0.0, high=1.0):
return random.random()
def iter():
if get_rand() < 0.05:
fs = line.strip().split('\t')
dnn_input = load_dnn_input_record(fs[0])
lr_input = load_lr_input_record(fs[1])
click = [int(fs[2])]
yield ("dnn_data", dnn_input), \
("lr_data", lr_input), \
("click", click)
return iter
def prepare_data():
"""
load data meta info from path, return (dnn_input_dim, lr_input_dim)
"""
file_dir_name = download_file()
meta_file_path = os.path.join(file_dir_name, 'data.meta.txt')
train_file_path = os.path.join(file_dir_name, 'train.txt')
with open(meta_file_path, "r") as f:
lines = f.readlines()
err_info = "wrong meta format"
assert len(lines) == 2, err_info
assert 'dnn_input_dim:' in lines[0] and 'lr_input_dim:' in lines[
1], err_info
res = map(int, [_.split(':')[1] for _ in lines])
res = list(res)
dnn_input_dim = res[0]
lr_input_dim = res[1]
logger.info('dnn input dim: %d' % dnn_input_dim)
logger.info('lr input dim: %d' % lr_input_dim)
return dnn_input_dim, lr_input_dim, train_file_path
def gen_fake_line(dnn_data_num=7,
dnn_data_range=1e5,
lr_data_num=5,
lr_data_range=1e5):
line = ""
# for deep data
for index in range(dnn_data_num):
data = str(random.randint(0, dnn_data_range - 1))
if index < dnn_data_num - 1:
data += " "
line += data
line += "\t"
# for wide data
for index in range(lr_data_num):
data = str(random.randint(0, lr_data_range - 1)) + ":" + str(1)
if index < lr_data_num - 1:
data += " "
line += data
line += "\t"
# for label
line += str(random.randint(0, 1))
line += "\n"
return line
def prepare_fake_data(file_nums=6, file_lines=1000):
"""
Create fake data with same type as avazu_ctr_data
"""
file_dir = tempfile.mkdtemp()
warnings.warn("Fake data write in {}".format(file_dir))
for file_index in range(file_nums):
with open(
os.path.join(file_dir,
"ctr_train_data_part_{}".format(file_index)),
'w+') as fin:
file_str = ""
for line_index in range(file_lines):
file_str += gen_fake_line()
fin.write(file_str)
warnings.warn("Write done ctr_train_data_part_{}".format(
file_index))
file_list = [os.path.join(file_dir, x) for x in os.listdir(file_dir)]
assert len(file_list) == file_nums
return file_list
if __name__ == "__main__":
pairwise_reader = DatasetCtrReader()
pairwise_reader.run_from_stdin()