You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
374 lines
14 KiB
374 lines
14 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from . import core
|
|
import six
|
|
import threading
|
|
from .framework import Program, Variable, program_guard, default_main_program, default_startup_program
|
|
from .executor import global_scope
|
|
from .data_feeder import DataFeeder, BatchedTensorProvider
|
|
from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer
|
|
from .unique_name import UniqueNameGenerator
|
|
|
|
__all__ = ['PyReader']
|
|
|
|
|
|
def _convert_places(places):
|
|
if not isinstance(places, (list, tuple)):
|
|
places = [places]
|
|
|
|
ret = []
|
|
for p in places:
|
|
if not isinstance(p, core.Place):
|
|
tmp = core.Place()
|
|
tmp.set_place(p)
|
|
p = tmp
|
|
|
|
ret.append(p)
|
|
return ret
|
|
|
|
|
|
class PyReader(object):
|
|
"""
|
|
Create a reader object for data feeding in Python.
|
|
Data would be prefetched using Python thread and be pushed
|
|
into a queue asynchronously. Data in the queue would be extracted
|
|
automatically when `Executor.run(...)` is called.
|
|
|
|
Args:
|
|
feed_list (list(Variable)|tuple(Variable)): feed variable list.
|
|
The variables should be created by :code:`fluid.layers.data()`.
|
|
capacity (int): capacity of the queue maintained in PyReader object.
|
|
use_double_buffer (bool): whether to use double_buffer_reader to
|
|
speed up data feeding.
|
|
iterable (bool): whether the created reader object is iterable.
|
|
|
|
Returns:
|
|
reader (Reader): the created reader object.
|
|
|
|
Examples:
|
|
1. If iterable = False, the created PyReader object is almost the
|
|
same as :code:`fluid.layers.py_reader()`. Operators would be
|
|
inserted into the program. User should call :code:`start()`
|
|
before each epoch and catch :code:`fluid.core.EOFException`
|
|
thrown by :code:`Executor.run()` when epoch ends. Once the
|
|
exception is caught, user should call :code:`reset()` to reset
|
|
the reader manually.
|
|
|
|
.. code-block:: python
|
|
|
|
image = fluid.layers.data(
|
|
name='image', shape=[784], dtype='float32')
|
|
label = fluid.layers.data(
|
|
name='label', shape=[1], dtype='int64')
|
|
|
|
reader = fluid.io.PyReader(feed_list=[image, label],
|
|
capacity=4, iterable=False)
|
|
reader.decorate_sample_list_generator(user_defined_reader)
|
|
... # definition of network is omitted
|
|
executor.run(fluid.default_main_program())
|
|
for _ in range(EPOCH_NUM):
|
|
reader.start()
|
|
while True:
|
|
try:
|
|
executor.run(feed=None, ...)
|
|
except fluid.core.EOFException:
|
|
reader.reset()
|
|
break
|
|
|
|
2. If iterable=True, the created PyReader object is decoupled with
|
|
the program. No operator would be inserted into the program.
|
|
In this case, the created reader is a Python generator, which
|
|
is iterable. User should feed the data yielded from PyReader
|
|
object into :code:`Executor.run(feed=...)`.
|
|
|
|
.. code-block:: python
|
|
|
|
image = fluid.layers.data(
|
|
name='image', shape=[784], dtype='float32')
|
|
label = fluid.layers.data(
|
|
name='label', shape=[1], dtype='int64')
|
|
|
|
reader = fluid.io.PyReader(feed_list=[image, label],
|
|
capacity=4, iterable=True)
|
|
reader.decorate_sample_list_generator(user_defined_reader,
|
|
places=fluid.cuda_places())
|
|
... # definition of network is omitted
|
|
executor.run(fluid.default_main_program())
|
|
for _ in range(EPOCH_NUM):
|
|
for data in reader():
|
|
executor.run(feed=data, ...)
|
|
"""
|
|
|
|
unique_name_generator = UniqueNameGenerator()
|
|
|
|
def __init__(self,
|
|
feed_list,
|
|
capacity,
|
|
use_double_buffer=True,
|
|
iterable=False):
|
|
self._tensor_reader = None
|
|
self._thread = None
|
|
self._iterable = iterable
|
|
self._use_double_buffer = use_double_buffer
|
|
self._capacity = capacity
|
|
self._feed_list = feed_list
|
|
if not self._iterable:
|
|
self._init_non_iterable()
|
|
|
|
def _init_iterable(self, places):
|
|
self._var_names = [v.name for v in self._feed_list]
|
|
self._places = _convert_places(places)
|
|
self._queue = core.init_lod_tensor_blocking_queue(core.Variable(),
|
|
self._capacity)
|
|
self._reader = core.create_py_reader(
|
|
self.queue, self._var_names, self._places, self._use_double_buffer)
|
|
|
|
def _init_non_iterable(self):
|
|
lod_levels = []
|
|
dtypes = []
|
|
shape_concat = []
|
|
ranks = []
|
|
shapes = []
|
|
|
|
for feed_data in self._feed_list:
|
|
dtypes.append(feed_data.dtype)
|
|
shape_concat.extend(feed_data.shape)
|
|
ranks.append(len(feed_data.shape))
|
|
shapes.append(feed_data.shape)
|
|
lod_levels.append(feed_data.lod_level)
|
|
|
|
queue_name = PyReader.unique_name_generator('lod_tensor_blocking_queue')
|
|
reader_name = PyReader.unique_name_generator('create_py_reader')
|
|
double_buffer_name = PyReader.unique_name_generator('double_buffer')
|
|
|
|
var = global_scope().var(queue_name)
|
|
self._queue = core.init_lod_tensor_blocking_queue(var, self._capacity)
|
|
|
|
startup_blk = default_startup_program().current_block()
|
|
startup_var = startup_blk.create_var(name=reader_name)
|
|
|
|
startup_blk.append_op(
|
|
type='create_py_reader',
|
|
inputs={'blocking_queue': [queue_name]},
|
|
outputs={'Out': [startup_var]},
|
|
attrs={
|
|
'shape_concat': shape_concat,
|
|
'lod_levels': lod_levels,
|
|
'ranks': ranks
|
|
})
|
|
|
|
startup_var.desc.set_dtypes(dtypes)
|
|
startup_var.persistable = True
|
|
|
|
main_prog_var = _copy_reader_var_(
|
|
default_main_program().current_block(), startup_var)
|
|
|
|
main_prog_var.stop_gradient = True
|
|
main_prog_var.persistable = True
|
|
|
|
reader = monkey_patch_reader_methods(main_prog_var)
|
|
if self._use_double_buffer:
|
|
double_buffer_reader = double_buffer(
|
|
reader, name=double_buffer_name)
|
|
# we return a double buffer reader. However, the reset method comes from
|
|
# py_reader.
|
|
double_buffer_reader.reset = reader.reset
|
|
reader = double_buffer_reader
|
|
|
|
self._reader = reader
|
|
|
|
default_main_program().current_block().append_op(
|
|
type='read',
|
|
inputs={'Reader': [self._reader]},
|
|
outputs={'Out': self._feed_list})
|
|
|
|
@property
|
|
def queue(self):
|
|
return self._queue
|
|
|
|
@property
|
|
def iterable(self):
|
|
return self._iterable
|
|
|
|
def __call__(self):
|
|
assert self.iterable, "PyReader is not iterable"
|
|
assert self._tensor_reader is not None, \
|
|
"Data source of PyReader has not set yet"
|
|
|
|
class Iterator(object):
|
|
def __init__(self, reader):
|
|
self._reader = reader._reader
|
|
self._reset = reader._reset
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
return self.next()
|
|
|
|
def next(self):
|
|
ret = self._reader.read_next()
|
|
if ret:
|
|
return ret
|
|
else:
|
|
self._reset()
|
|
raise StopIteration
|
|
|
|
self._start()
|
|
return Iterator(self)
|
|
|
|
def _reset(self):
|
|
self._reader.reset()
|
|
self._thread.join()
|
|
|
|
def start(self):
|
|
'''
|
|
Start the data feeding thread.
|
|
Can only call when the reader object is not iterable.
|
|
'''
|
|
assert not self._iterable, "start() cannot be called when PyReader is iterable"
|
|
self._start()
|
|
|
|
def reset(self):
|
|
'''
|
|
Reset the reader object when :code:`fluid.core.EOFException` raises.
|
|
Can only call when the reader object is not iterable.
|
|
'''
|
|
assert not self._iterable, "reset() cannot be called when PyReader is iterable"
|
|
self._reset()
|
|
|
|
def _start(self):
|
|
def __thread_main__():
|
|
try:
|
|
for tensors in self._tensor_reader():
|
|
array = core.LoDTensorArray()
|
|
for item in tensors:
|
|
if not isinstance(item, core.LoDTensor):
|
|
tmp = core.LoDTensor()
|
|
tmp.set(item, core.CPUPlace())
|
|
item = tmp
|
|
|
|
array.append(item)
|
|
|
|
if not self._queue.push(array):
|
|
break
|
|
|
|
self._queue.close()
|
|
except Exception as ex:
|
|
self._queue.close()
|
|
raise ex
|
|
|
|
self._thread = threading.Thread(target=__thread_main__)
|
|
self._thread.daemon = True
|
|
self._thread.start()
|
|
|
|
def decorate_sample_generator(self,
|
|
sample_generator,
|
|
batch_size,
|
|
drop_last=True,
|
|
places=None):
|
|
'''
|
|
Set the data source of the PyReader object.
|
|
|
|
The provided :code:`sample_generator` should be a Python generator,
|
|
which yields numpy.ndarray typed data of each sample.
|
|
|
|
:code:`places` must be set when the PyReader object is iterable.
|
|
|
|
If all inputs have no lods, this method is faster than
|
|
:code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
|
|
|
|
Args:
|
|
sample_generator (generator): Python generator that yields
|
|
numpy.ndarray-typed sample data.
|
|
batch_size (int): batch size. Must be larger than 0.
|
|
drop_last (bool): Whether to drop the last batch when sample number
|
|
is less than batch_size.
|
|
places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
|
|
be provided when PyReader is iterable.
|
|
'''
|
|
assert batch_size > 0, "batch_size must be larger than 0"
|
|
has_lod = False
|
|
for f in self._feed_list:
|
|
if f.lod_level != 0:
|
|
has_lod = True
|
|
break
|
|
|
|
if has_lod:
|
|
self.decorate_sample_list_generator(
|
|
paddle.batch(
|
|
sample_generator,
|
|
batch_size=batch_size,
|
|
drop_last=drop_last),
|
|
places=places)
|
|
else:
|
|
reader = BatchedTensorProvider(
|
|
feed_list=self._feed_list,
|
|
place=core.CPUPlace(),
|
|
batch_size=batch_size,
|
|
generator=sample_generator,
|
|
drop_last=drop_last)
|
|
self.decorate_batch_generator(reader, places=places)
|
|
|
|
def decorate_sample_list_generator(self, reader, places=None):
|
|
'''
|
|
Set the data source of the PyReader object.
|
|
|
|
The provided :code:`reader` should be a Python generator,
|
|
which yields list(numpy.ndarray) typed batched data.
|
|
|
|
:code:`places` must be set when the PyReader object is iterable.
|
|
|
|
Args:
|
|
reader (generator): Python generator that yields
|
|
list(numpy.ndarray)-typed batched data.
|
|
places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
|
|
be provided when PyReader is iterable.
|
|
'''
|
|
assert self._tensor_reader is None, \
|
|
"Cannot reset the data source of PyReader"
|
|
with program_guard(Program(), Program()):
|
|
feeder = DataFeeder(
|
|
feed_list=self._feed_list, place=core.CPUPlace())
|
|
paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
|
|
|
|
def __tensor_reader_impl__():
|
|
for slots in paddle_reader():
|
|
yield [slots[var.name] for var in self._feed_list]
|
|
|
|
self.decorate_batch_generator(__tensor_reader_impl__, places)
|
|
|
|
def decorate_batch_generator(self, reader, places=None):
|
|
'''
|
|
Set the data source of the PyReader object.
|
|
|
|
The provided :code:`reader` should be a Python generator,
|
|
which yields numpy.ndarray-typed or LoDTensor-typed batched data.
|
|
|
|
:code:`places` must be set when the PyReader object is iterable.
|
|
|
|
Args:
|
|
reader (generator): Python generator that yields LoDTensor-typed
|
|
batched data.
|
|
places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
|
|
be provided when PyReader is iterable.
|
|
'''
|
|
assert self._tensor_reader is None, \
|
|
"Cannot reset the data source of PyReader"
|
|
self._tensor_reader = reader
|
|
if self._iterable:
|
|
assert places is not None, "Places cannot be None when py_reader is iterable"
|
|
self._init_iterable(places)
|