You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
245 lines
7.9 KiB
245 lines
7.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <mkldnn/include/mkldnn.hpp>
|
|
#include "paddle/fluid/operators/elementwise_op.h"
|
|
#include "paddle/fluid/operators/elementwise_op_function.h"
|
|
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
|
|
#include "xbyak/xbyak.h"
|
|
#include "xbyak/xbyak_util.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::DataLayout;
|
|
using mkldnn::memory;
|
|
|
|
struct vector_mul : public Xbyak::CodeGenerator {
|
|
vector_mul() {
|
|
// RDI is ptr X
|
|
// RSI is ptr Y
|
|
// RDX is ptr Z
|
|
// RCX is h
|
|
// r8 is w
|
|
|
|
push(rbx);
|
|
|
|
xor_(rax, rax);
|
|
xor_(r10, r10);
|
|
vmovups(zmm3, ptr[rsi]);
|
|
|
|
L("h_loop");
|
|
xor_(rbx, rbx);
|
|
L("w_loop");
|
|
vmovups(zmm2, ptr[rdi + rax]);
|
|
vmulps(zmm1, zmm2, zmm3);
|
|
vmovups(ptr[rdx + rax], zmm1);
|
|
add(rax, 64);
|
|
inc(rbx);
|
|
cmp(r8, rbx);
|
|
jnz("w_loop");
|
|
inc(r10);
|
|
cmp(r10, rcx);
|
|
jnz("h_loop");
|
|
|
|
pop(rbx);
|
|
ret();
|
|
}
|
|
};
|
|
|
|
void check(const float* x, const float* y, float* z, int w) {
|
|
for (int wi = 0; wi < w; wi++) {
|
|
for (int i = 0; i < 16; i++) {
|
|
z[wi * 16 + i] = x[wi * 16 + i] * y[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
static mkldnn::memory::format StringToMKLDNNFormat(std::string& format) {
|
|
std::transform(format.begin(), format.end(), format.begin(), ::tolower);
|
|
|
|
if (!format.compare("nchw")) {
|
|
return memory::format::nchw;
|
|
} else if (!format.compare("nchw16c")) {
|
|
return memory::format::nChw16c;
|
|
} else if (!format.compare("nchw8c")) {
|
|
return memory::format::nChw8c;
|
|
} else if (!format.compare("nhwc")) {
|
|
return memory::format::nhwc;
|
|
} else {
|
|
return memory::format::any;
|
|
}
|
|
}
|
|
|
|
static void UpdateDataFormat(const framework::ExecutionContext& ctx,
|
|
framework::Tensor* tensor, const char* attribute) {
|
|
if (ctx.op().HasAttr(attribute)) {
|
|
auto format_as_string = ctx.Attr<std::string>(attribute);
|
|
auto format = StringToMKLDNNFormat(format_as_string);
|
|
if (format != memory::format::any) {
|
|
tensor->set_format(format);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static void ReorderInput(framework::Tensor* tensor,
|
|
const platform::Place& place,
|
|
const mkldnn::engine& engine, bool isFourDim) {
|
|
using platform::to_void_cast;
|
|
auto dims = paddle::framework::vectorize2int(tensor->dims());
|
|
framework::Tensor out_tensor;
|
|
out_tensor.Resize(tensor->dims());
|
|
out_tensor.set_format(isFourDim ? memory::format::nchw : memory::format::nc);
|
|
out_tensor.set_layout(tensor->layout());
|
|
mkldnn::memory input_memory = {
|
|
{{dims, platform::MKLDNNGetDataType<T>(), tensor->format()}, engine},
|
|
to_void_cast<T>(tensor->data<T>())};
|
|
mkldnn::memory output_memory = {
|
|
{{dims, platform::MKLDNNGetDataType<T>(), out_tensor.format()}, engine},
|
|
to_void_cast<T>(out_tensor.mutable_data<T>(place))};
|
|
platform::Reorder(input_memory, output_memory);
|
|
tensor->ShareDataWith(out_tensor);
|
|
}
|
|
|
|
template <typename T>
|
|
class ElementwiseMulMKLDNNKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
using Tensor = framework::Tensor;
|
|
|
|
int axis = ctx.Attr<int>("axis");
|
|
auto* x = ctx.Input<Tensor>("X");
|
|
auto* y = ctx.Input<Tensor>("Y");
|
|
auto* z = ctx.Output<Tensor>("Out");
|
|
const T* x_data = x->data<T>();
|
|
const T* y_data = y->data<T>();
|
|
T* z_data = z->mutable_data<T>(ctx.GetPlace());
|
|
|
|
auto x_dims = x->dims();
|
|
auto y_dims_untrimmed = y->dims();
|
|
auto x_int_dims = paddle::framework::vectorize2int(x_dims);
|
|
|
|
UpdateDataFormat(ctx, (Tensor*)x, "x_data_format");
|
|
UpdateDataFormat(ctx, (Tensor*)y, "y_data_format");
|
|
|
|
Xbyak::util::Cpu cpu;
|
|
const bool is_avx512_enabled = cpu.has(Xbyak::util::Cpu::tAVX512F);
|
|
const bool are_dims_divisable = !(x_int_dims[1] % 16);
|
|
const bool is_x_format_correct = x->format() == memory::format::nChw16c;
|
|
const bool is_y_format_correct = y->format() == memory::format::nc;
|
|
if (is_x_format_correct && is_y_format_correct && are_dims_divisable &&
|
|
is_avx512_enabled) {
|
|
int pre, n, post;
|
|
get_mid_dims(x_dims, y_dims_untrimmed, axis, &pre, &n, &post);
|
|
|
|
if (post == 1) {
|
|
PADDLE_THROW("Not implemented when post is 1");
|
|
} else {
|
|
// Just check whether it works for RE-Resnext.
|
|
PADDLE_ENFORCE_EQ(x_dims.size(), 4, "X should have 4 dimensions");
|
|
|
|
int n = x_dims[0];
|
|
int c = x_dims[1];
|
|
int h = x_dims[2];
|
|
int w = x_dims[3];
|
|
|
|
PADDLE_ENFORCE(y_dims_untrimmed[0] == n && y_dims_untrimmed[1] == c,
|
|
"Y should be in nc format");
|
|
|
|
constexpr int simd_width = 16;
|
|
int C = c / simd_width;
|
|
|
|
vector_mul mul;
|
|
|
|
using mul_func_t =
|
|
void (*)(const float*, const float*, float*, int, int);
|
|
|
|
mul_func_t mul_func = (mul_func_t)mul.getCode();
|
|
|
|
#pragma omp parallel for collapse(2)
|
|
for (int ni = 0; ni < n; ni++) {
|
|
for (int ci = 0; ci < C; ci++) {
|
|
auto ptr_x =
|
|
x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
|
|
|
|
auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
|
|
auto ptr_z =
|
|
z_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
|
|
|
|
mul_func(ptr_x, ptr_y, ptr_z, h, w);
|
|
}
|
|
}
|
|
}
|
|
|
|
z->set_layout(DataLayout::kMKLDNN);
|
|
z->set_format(x->format());
|
|
} else {
|
|
// Fallback to naive version:
|
|
const bool are_inputs_in_same_format = x->format() == y->format();
|
|
const bool is_x_nchw = x->format() == memory::format::nchw;
|
|
const bool is_x_nc = x->format() == memory::format::nc;
|
|
const bool is_y_nchw = y->format() == memory::format::nchw;
|
|
const bool is_y_nc = y->format() == memory::format::nc;
|
|
if (!are_inputs_in_same_format) {
|
|
using platform::MKLDNNDeviceContext;
|
|
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
|
|
const auto& mkldnn_engine = dev_ctx.GetEngine();
|
|
if (!(is_x_nchw || is_x_nc))
|
|
ReorderInput<T>((Tensor*)x, ctx.GetPlace(), mkldnn_engine,
|
|
x->dims().size() == 4);
|
|
if (!(is_y_nchw || is_y_nc))
|
|
ReorderInput<T>((Tensor*)y, ctx.GetPlace(), mkldnn_engine,
|
|
y->dims().size() == 4);
|
|
}
|
|
|
|
auto mul_func = [](T a, T b) -> T { return a * b; };
|
|
|
|
TransformFunctor<decltype(mul_func), T,
|
|
paddle::platform::CPUDeviceContext, T>
|
|
functor(
|
|
x, y, z,
|
|
ctx.template device_context<paddle::platform::CPUDeviceContext>(),
|
|
mul_func);
|
|
|
|
axis = (axis == -1 ? x_dims.size() - y_dims_untrimmed.size() : axis);
|
|
PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
|
|
"Axis should be in range [0, x_dims)");
|
|
|
|
auto y_dims = trim_trailing_singular_dims(y_dims_untrimmed);
|
|
axis = (y_dims.size() == 0) ? x_dims.size() : axis;
|
|
|
|
int pre, n, post;
|
|
get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);
|
|
|
|
if (post == 1) {
|
|
functor.RunRowWise(n, pre);
|
|
} else {
|
|
functor.RunMidWise(n, pre, post);
|
|
}
|
|
z->set_layout(DataLayout::kMKLDNN);
|
|
z->set_format(x->format());
|
|
}
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_KERNEL(elementwise_mul, MKLDNN, ::paddle::platform::CPUPlace,
|
|
ops::ElementwiseMulMKLDNNKernel<float>)
|