You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
70 lines
2.5 KiB
70 lines
2.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <vector>
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/operators/strided_memcpy.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename Place, typename T>
|
|
class ConcatKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto ins = ctx.MultiInput<framework::Tensor>("X");
|
|
auto* out = ctx.Output<framework::Tensor>("Out");
|
|
int64_t axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
|
|
const size_t n = ins.size();
|
|
size_t output_offset = 0;
|
|
out->mutable_data<T>(ctx.GetPlace());
|
|
auto out_stride = framework::stride(out->dims());
|
|
for (size_t i = 0; i < n; i++) {
|
|
auto& in = ins[i];
|
|
auto axis_dim = in->dims()[axis];
|
|
auto in_stride = framework::stride(in->dims());
|
|
StridedMemcpy<T>(ctx.device_context(), in->data<T>(), in_stride,
|
|
in->dims(), out_stride, out->data<T>() + output_offset);
|
|
output_offset += axis_dim * in_stride[axis];
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Place, typename T>
|
|
class ConcatGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const {
|
|
auto* in = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
auto outs = ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X"));
|
|
int64_t axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
|
|
const size_t n = outs.size();
|
|
size_t input_offset = 0;
|
|
auto in_stride = framework::stride(in->dims());
|
|
for (size_t i = 0; i < n; i++) {
|
|
auto& out = outs[i];
|
|
out->mutable_data<T>(ctx.GetPlace());
|
|
size_t axis_dim = out->dims()[axis];
|
|
auto out_stride = framework::stride(out->dims());
|
|
StridedMemcpy<T>(ctx.device_context(), in->data<T>() + input_offset,
|
|
in_stride, out->dims(), out_stride, out->data<T>());
|
|
input_offset += axis_dim * in_stride[axis];
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|