You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
130 lines
4.9 KiB
130 lines
4.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/rank_loss_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class RankLossOp : public framework::OperatorWithKernel {
|
|
public:
|
|
RankLossOp(const std::string &type, const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
// input check
|
|
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Left"), "Input(Left) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Right"), "Input(Right) shouldn't be null.");
|
|
|
|
auto label_dims = ctx->GetInputDim("Label");
|
|
auto left_dims = ctx->GetInputDim("Left");
|
|
auto right_dims = ctx->GetInputDim("Right");
|
|
|
|
PADDLE_ENFORCE((label_dims == left_dims) && (left_dims == right_dims),
|
|
"All inputs must have the same size.");
|
|
PADDLE_ENFORCE(
|
|
(label_dims.size() == 2) && (label_dims[1] == 1),
|
|
"All inputs must be 2-D tensors with shape [batch_size x 1].");
|
|
ctx->SetOutputDim("Out", label_dims);
|
|
}
|
|
};
|
|
|
|
class RankLossOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
RankLossOpMaker(framework::OpProto *proto,
|
|
framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("Label",
|
|
"(2-D Tensor with shape [batch_size x 1]) "
|
|
"The label indicating A ranked higher than B or not.");
|
|
AddInput("Left",
|
|
"(2-D Tensor with shape [batch_size x 1]) "
|
|
"The output of RankNet for doc A.");
|
|
AddInput("Right",
|
|
"(2-D Tensor with shape [batch_size x 1]) "
|
|
"The output of RankNet for doc B.");
|
|
AddOutput("Out",
|
|
"(2-D Tensor with shape [batch_size x 1]) "
|
|
"The output loss of RankLoss operator.");
|
|
AddComment(R"DOC(
|
|
RankLoss Operator.
|
|
|
|
RankLoss operator for RankNet
|
|
(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf).
|
|
RankNet is a pairwise ranking model with
|
|
one training sample consisting of a pair of doc A and B, and the label P
|
|
indicating that A is ranked higher than B or not:
|
|
|
|
P = {0, 1} or {0, 0.5, 1}, where 0.5 means no information about the rank of
|
|
the input pair.
|
|
|
|
The RankLoss operator takes three inputs: Left (o_i), Right (o_j) and Label
|
|
(P_{i,j}), which represent the output score of RankNet for the two docs and
|
|
the label respectively, and yields the rank loss C_{i,j} using the following
|
|
equation:
|
|
|
|
$$
|
|
C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
|
|
o_{i,j} = o_i - o_j \\
|
|
\tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
|
|
$$
|
|
|
|
The operator can take batch inputs with size batch_size (batch_size >= 1).
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class RankLossGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
RankLossGradOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Left"), "Input(Left) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Right"), "Input(Right) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) shouldn't be null.");
|
|
auto dims = ctx->GetInputDim("Left");
|
|
auto left_grad_name = framework::GradVarName("Left");
|
|
auto right_grad_name = framework::GradVarName("Right");
|
|
|
|
if (ctx->HasOutput(left_grad_name)) {
|
|
ctx->SetOutputDim(left_grad_name, dims);
|
|
}
|
|
|
|
if (ctx->HasOutput(right_grad_name)) {
|
|
ctx->SetOutputDim(right_grad_name, dims);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP(rank_loss, ops::RankLossOp, ops::RankLossOpMaker, rank_loss_grad,
|
|
ops::RankLossGradOp);
|
|
REGISTER_OP_CPU_KERNEL(rank_loss,
|
|
ops::RankLossKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
rank_loss_grad, ops::RankLossGradKernel<paddle::platform::CPUPlace, float>);
|