You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
629 lines
24 KiB
629 lines
24 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <vector>
|
|
#include "paddle/framework/executor.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
constexpr char kInputs[] = "inputs";
|
|
constexpr char kInitialStates[] = "initial_states";
|
|
constexpr char kParameters[] = "parameters";
|
|
constexpr char kOutputs[] = "outputs";
|
|
constexpr char kStepScopes[] = "step_scopes";
|
|
constexpr char kExStates[] = "ex_states";
|
|
constexpr char kStates[] = "states";
|
|
constexpr char kStepBlock[] = "step_block";
|
|
constexpr char kReverse[] = "reverse";
|
|
constexpr char kIsTrain[] = "is_train";
|
|
#define GRAD_SUFFIX "@GRAD"
|
|
constexpr char kInputGrads[] = "inputs" GRAD_SUFFIX;
|
|
constexpr char kOutputGrads[] = "outputs" GRAD_SUFFIX;
|
|
constexpr char kParamGrads[] = "parameters" GRAD_SUFFIX;
|
|
constexpr char kInitStateGrads[] = "initial_states" GRAD_SUFFIX;
|
|
|
|
using StepScopeVar = std::vector<framework::Scope *>;
|
|
|
|
// StepScopes manages scopes inside RNN.
|
|
// StepScopes::CurScope() get the current scope
|
|
// StepScopes::ExScope() get the ex-scope, or scope in previous time step.
|
|
// StepScopes::Next() move to next time step.
|
|
//
|
|
// if is_train = False, then
|
|
// there are two scopes for the RNN and just support forward.
|
|
// else
|
|
// the len(scopes) == seq_len
|
|
//
|
|
// if is_backward = True, then
|
|
// reversely access scopes
|
|
// else
|
|
// access scopes from begin to end.
|
|
class StepScopes {
|
|
public:
|
|
StepScopes(const framework::Scope &parent, StepScopeVar *scopes,
|
|
bool is_train, size_t seq_len, bool is_backward = false)
|
|
: counter_(is_backward ? seq_len - 1 : 0UL),
|
|
scopes_(scopes),
|
|
is_train_(is_train),
|
|
is_backward_(is_backward) {
|
|
size_t num_step_scopes = is_train ? seq_len : 2;
|
|
PADDLE_ENFORCE(is_train || !is_backward,
|
|
"Cannot backward when is not training");
|
|
if (!is_backward_) {
|
|
PADDLE_ENFORCE(scopes->empty());
|
|
scopes->reserve(static_cast<size_t>(num_step_scopes));
|
|
for (size_t i = 0; i < num_step_scopes; ++i) {
|
|
scopes->emplace_back(&parent.NewScope());
|
|
}
|
|
}
|
|
}
|
|
|
|
framework::Scope &CurScope() { return GetScope(counter_); }
|
|
|
|
framework::Scope &ExScope() {
|
|
auto &scope = GetScope(is_backward_ ? counter_ + 1 : counter_ - 1);
|
|
return scope;
|
|
}
|
|
|
|
void Next() {
|
|
if (is_backward_) {
|
|
--counter_;
|
|
} else {
|
|
++counter_;
|
|
}
|
|
}
|
|
|
|
private:
|
|
framework::Scope &GetScope(size_t scope_id) const {
|
|
if (!is_train_) {
|
|
scope_id %= 2;
|
|
}
|
|
PADDLE_ENFORCE_LT(scope_id, scopes_->size());
|
|
return *(*scopes_)[scope_id];
|
|
}
|
|
|
|
size_t counter_;
|
|
StepScopeVar *scopes_;
|
|
bool is_train_;
|
|
bool is_backward_;
|
|
};
|
|
|
|
// Base class for RecurrentOp/RecurrentGradOp
|
|
// Some common protected functions for RecurrentOp/RecurrentGradOp
|
|
class RecurrentBase : public framework::OperatorBase {
|
|
public:
|
|
RecurrentBase(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorBase(type, inputs, outputs, attrs) {}
|
|
|
|
protected:
|
|
// Get SequenceLength from Scope
|
|
// The sequence length is got from input tensor. The input tensor's
|
|
// dimension should be [SEQ_LEN, ..., ...]. The first of the tensor's shape
|
|
// is SEQ_LEN. The second of the tensor's shape could be the batch size or
|
|
// nested sequence length.
|
|
int64_t GetSequenceLength(const framework::Scope &scope) const {
|
|
// Dim format SEQ_LEN, BATCH_SIZE, ...
|
|
int64_t seq_len = -1;
|
|
auto &all_inputs = Inputs(kInputs);
|
|
PADDLE_ENFORCE(!all_inputs.empty());
|
|
for (auto &iname : all_inputs) {
|
|
auto *var = scope.FindVar(iname);
|
|
PADDLE_ENFORCE(var != nullptr);
|
|
PADDLE_ENFORCE(var->IsType<framework::LoDTensor>());
|
|
auto &dim = var->Get<framework::LoDTensor>().dims();
|
|
if (seq_len == -1) {
|
|
seq_len = dim[0];
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(seq_len, dim[0]);
|
|
}
|
|
}
|
|
return seq_len;
|
|
}
|
|
|
|
// for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
|
|
// map(dst_scope.Var, dst_vars)):
|
|
// dst_tensor.ShareDataWith(src_tensor)
|
|
static void LinkTensor(const framework::Scope &src_scope,
|
|
const std::vector<std::string> &src_vars,
|
|
framework::Scope *dst_scope,
|
|
const std::vector<std::string> &dst_vars) {
|
|
LinkTensorWithCallback(
|
|
src_scope, src_vars, dst_scope, dst_vars,
|
|
[&](const framework::Tensor &src, framework::Tensor *dst) {
|
|
dst->ShareDataWith(src);
|
|
});
|
|
}
|
|
|
|
// for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
|
|
// map(dst_scope.Var, dst_vars)):
|
|
// callback(src_tensor, &dst_tensor)
|
|
template <typename Callback>
|
|
static void LinkTensorWithCallback(const framework::Scope &src_scope,
|
|
const std::vector<std::string> &src_vars,
|
|
framework::Scope *dst_scope,
|
|
const std::vector<std::string> &dst_vars,
|
|
Callback callback) {
|
|
PADDLE_ENFORCE_EQ(src_vars.size(), dst_vars.size());
|
|
for (size_t i = 0; i < dst_vars.size(); ++i) {
|
|
VLOG(10) << "Link " << src_vars[i] << " to " << dst_vars[i];
|
|
AccessTensor(src_scope, src_vars[i], dst_scope, dst_vars[i], callback);
|
|
}
|
|
}
|
|
|
|
// for src_tensor, dst_tensor in zip(map(src_scope.FindVar, src_vars),
|
|
// map(dst_scope.FindVar, dst_vars)):
|
|
// callback(src_tensor, &dst_tensor)
|
|
template <typename Callback>
|
|
static void LinkTensorWithCallback(const framework::Scope &src_scope,
|
|
const std::vector<std::string> &src_vars,
|
|
const framework::Scope &dst_scope,
|
|
const std::vector<std::string> &dst_vars,
|
|
Callback callback) {
|
|
PADDLE_ENFORCE_EQ(src_vars.size(), dst_vars.size());
|
|
for (size_t i = 0; i < dst_vars.size(); ++i) {
|
|
VLOG(10) << "Link " << src_vars[i] << " to " << dst_vars[i];
|
|
AccessTensor(src_scope, src_vars[i], dst_scope, dst_vars[i], callback);
|
|
}
|
|
}
|
|
|
|
// (seq_len, shape) -> return [seq_len] + list(shape)
|
|
static framework::DDim PrependDims(size_t seq_len,
|
|
const framework::DDim &src) {
|
|
auto dims = framework::vectorize(src);
|
|
dims.insert(dims.begin(), static_cast<int64_t>(seq_len));
|
|
return framework::make_ddim(dims);
|
|
}
|
|
|
|
private:
|
|
template <typename Callback>
|
|
static void AccessTensor(const framework::Scope &src_scope,
|
|
const std::string &src_var_name,
|
|
framework::Scope *dst_scope,
|
|
const std::string &dst_var_name, Callback callback) {
|
|
auto *src_var = src_scope.FindVar(src_var_name);
|
|
PADDLE_ENFORCE(src_var != nullptr);
|
|
auto &src_tensor = src_var->Get<framework::LoDTensor>();
|
|
|
|
auto *dst_var = dst_scope->Var(dst_var_name);
|
|
auto *dst_tensor = dst_var->GetMutable<framework::LoDTensor>();
|
|
callback(src_tensor, dst_tensor);
|
|
}
|
|
|
|
template <typename Callback>
|
|
static void AccessTensor(const framework::Scope &src_scope,
|
|
const std::string &src_var_name,
|
|
const framework::Scope &dst_scope,
|
|
const std::string &dst_var_name, Callback callback) {
|
|
auto *src_var = src_scope.FindVar(src_var_name);
|
|
PADDLE_ENFORCE(src_var != nullptr);
|
|
auto &src_tensor = src_var->Get<framework::LoDTensor>();
|
|
auto *dst_var = dst_scope.FindVar(dst_var_name);
|
|
PADDLE_ENFORCE(dst_var != nullptr);
|
|
auto *dst_tensor = dst_var->GetMutable<framework::LoDTensor>();
|
|
callback(src_tensor, dst_tensor);
|
|
}
|
|
};
|
|
|
|
class RecurrentOp : public RecurrentBase {
|
|
public:
|
|
RecurrentOp(const std::string &type, const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: RecurrentBase(type, inputs, outputs, attrs) {}
|
|
|
|
void Run(const framework::Scope &scope,
|
|
const platform::DeviceContext &dev_ctx) const override {
|
|
auto seq_len = static_cast<size_t>(this->GetSequenceLength(scope));
|
|
VLOG(3) << "Static RNN input sequence length = " << seq_len;
|
|
StepScopes scopes = CreateStepScopes(scope, seq_len);
|
|
auto reverse = Attr<bool>(kReverse);
|
|
|
|
framework::Executor executor(dev_ctx);
|
|
auto *block = Attr<framework::BlockDescBind *>(kStepBlock);
|
|
auto *program = block->Program();
|
|
|
|
for (size_t i = 0; i < seq_len; ++i) {
|
|
size_t seq_offset = reverse ? seq_len - i - 1 : i;
|
|
VLOG(3) << "Recurrent operate at the time step " << seq_offset;
|
|
|
|
auto &cur_scope = scopes.CurScope();
|
|
|
|
// Link outside::input --> inside::input
|
|
// inside::input = outside::input[seq_offset: seq_offset+1]
|
|
LinkTensorWithCallback(
|
|
scope, Inputs(kInputs), &cur_scope, Inputs(kInputs),
|
|
[&seq_offset](const framework::Tensor &outside,
|
|
framework::Tensor *inside) {
|
|
inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
|
|
auto dims = framework::vectorize(inside->dims());
|
|
dims.erase(dims.begin());
|
|
inside->Resize(framework::make_ddim(dims));
|
|
});
|
|
|
|
if (i == 0) {
|
|
// Link initial states --> ex_states
|
|
LinkTensor(scope, Inputs(kInitialStates), &cur_scope,
|
|
Attr<std::vector<std::string>>(kExStates));
|
|
} else {
|
|
auto &ex_scope = scopes.ExScope();
|
|
// Link ex_scope::state --> cur_scope::ex_state
|
|
LinkTensor(ex_scope, Attr<std::vector<std::string>>(kStates),
|
|
&cur_scope, Attr<std::vector<std::string>>(kExStates));
|
|
}
|
|
|
|
// Every inputs are linked now, execute!
|
|
executor.Run(*program, &cur_scope, block->ID(),
|
|
false /*create_local_scope*/);
|
|
|
|
// Copy inside::output -> outside::output
|
|
// outside::output[seq_offset: seq_offset + 1] = inside::output
|
|
this->LinkTensorWithCallback(
|
|
cur_scope, Outputs(kOutputs), scope, Outputs(kOutputs),
|
|
[&](const framework::LoDTensor &src_tensor,
|
|
framework::LoDTensor *dst_tensor) {
|
|
if (i == 0) { // create output tensor at begin
|
|
dst_tensor->Resize(PrependDims(seq_len, src_tensor.dims()));
|
|
dst_tensor->mutable_data(dev_ctx.GetPlace(), src_tensor.type());
|
|
}
|
|
|
|
auto dst_out = dst_tensor->Slice(seq_offset, seq_offset + 1);
|
|
// Explicit copy output since the local RNN scope can be destroyed
|
|
// early.
|
|
framework::CopyFrom(src_tensor, dev_ctx.GetPlace(), dev_ctx,
|
|
&dst_out);
|
|
});
|
|
|
|
scopes.Next();
|
|
}
|
|
}
|
|
|
|
private:
|
|
StepScopes CreateStepScopes(const framework::Scope &scope,
|
|
size_t seq_len) const {
|
|
auto *var = scope.FindVar(Output(kStepScopes));
|
|
PADDLE_ENFORCE(var != nullptr);
|
|
return StepScopes(scope, var->GetMutable<StepScopeVar>(),
|
|
Attr<bool>(kIsTrain), seq_len);
|
|
}
|
|
};
|
|
|
|
class RecurrentGradOp : public RecurrentBase {
|
|
public:
|
|
RecurrentGradOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: RecurrentBase(type, inputs, outputs, attrs) {}
|
|
|
|
void Run(const framework::Scope &scope,
|
|
const platform::DeviceContext &dev_ctx) const override {
|
|
auto seq_len = static_cast<size_t>(GetSequenceLength(scope));
|
|
StepScopes scopes = CreateStepScopes(scope, seq_len);
|
|
auto reverse = Attr<bool>(kReverse);
|
|
|
|
framework::Executor executor(dev_ctx);
|
|
auto *block = Attr<framework::BlockDescBind *>(kStepBlock);
|
|
auto *program = block->Program();
|
|
|
|
for (size_t step_id = 0; step_id < seq_len; ++step_id) {
|
|
size_t seq_offset = reverse ? step_id : seq_len - step_id - 1;
|
|
VLOG(3) << "Recurrent backward operate at the time step " << seq_offset;
|
|
auto &cur_scope = scopes.CurScope();
|
|
// Link outside::output_grads --> inside::output_grads
|
|
// inside::output_grad = outside::output_grad[seq_offset:seq_offset+1]
|
|
LinkTensorWithCallback(
|
|
scope, Inputs(kOutputGrads), &cur_scope, Inputs(kOutputGrads),
|
|
[&](const framework::Tensor &outside, framework::Tensor *inside) {
|
|
inside->ShareDataWith(outside.Slice(seq_offset, seq_offset + 1));
|
|
auto dims = framework::vectorize(inside->dims());
|
|
dims.erase(dims.begin());
|
|
inside->Resize(framework::make_ddim(dims));
|
|
});
|
|
auto og_set = List2Set(Inputs(kOutputGrads));
|
|
|
|
if (VLOG_IS_ON(10)) {
|
|
std::ostringstream sout;
|
|
std::copy(og_set.begin(), og_set.end(),
|
|
std::ostream_iterator<std::string>(sout, ","));
|
|
VLOG(10) << " RNN output gradients = [" << sout.str() << "]";
|
|
}
|
|
|
|
// Link states
|
|
// if cur_scope::cur_state_grad in out_grads:
|
|
// cur_scope::cur_state_grad += ex_scope::ex_state_grad
|
|
// else:
|
|
// ex_scope::ex_state_grad --> cur_scope::cur_state_grad
|
|
if (step_id != 0) { // not at beginning
|
|
auto &ex_scope = scopes.ExScope();
|
|
auto ex_state_grads =
|
|
GradVarLists(Attr<std::vector<std::string>>(kExStates));
|
|
auto cur_state_grads =
|
|
GradVarLists(Attr<std::vector<std::string>>(kStates));
|
|
|
|
PADDLE_ENFORCE_EQ(ex_state_grads.size(), cur_state_grads.size());
|
|
for (size_t i = 0; i < ex_state_grads.size(); ++i) {
|
|
auto &cur_grad = cur_state_grads[i];
|
|
auto &ex_grad = ex_state_grads[i];
|
|
auto &ex_tensor =
|
|
ex_scope.FindVar(ex_grad)->Get<framework::LoDTensor>();
|
|
|
|
VLOG(10) << " RNN link " << cur_grad << " from " << ex_grad;
|
|
auto *cur_grad_var = cur_scope.Var(cur_grad);
|
|
auto cur_grad_tensor =
|
|
cur_grad_var->GetMutable<framework::LoDTensor>();
|
|
framework::CopyFrom(ex_tensor, dev_ctx.GetPlace(), dev_ctx,
|
|
cur_grad_tensor);
|
|
}
|
|
}
|
|
|
|
VLOG(5) << "Recurrent memory linking finished ";
|
|
// Run step block with cur_scope
|
|
executor.Run(*program, &cur_scope, block->ID(),
|
|
false /*create_local_scope*/);
|
|
|
|
VLOG(5) << "executor.Run finished ";
|
|
|
|
auto local_var_names = LocalVarNames(cur_scope);
|
|
|
|
// Accumulate params
|
|
// if (step == 0):
|
|
// outside::param_grad = 0.0
|
|
// outside::param_grad += inside::param_grad
|
|
{
|
|
auto &pg_names = Outputs(kParamGrads);
|
|
auto &p_names = Inputs(kParameters);
|
|
PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size());
|
|
|
|
for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
|
|
auto inside_grad_name = framework::GradVarName(p_names[param_id]);
|
|
|
|
// If does not compute gradient of that variable inside rnn, just
|
|
// continue
|
|
if (local_var_names.find(inside_grad_name) == local_var_names.end()) {
|
|
continue;
|
|
}
|
|
|
|
// zero gradient variable in step 0
|
|
if (step_id == 0) {
|
|
auto &inside_tensor = cur_scope.FindVar(inside_grad_name)
|
|
->Get<framework::LoDTensor>();
|
|
framework::AttributeMap attrs;
|
|
attrs["dtype"] = framework::ToDataType(inside_tensor.type());
|
|
attrs["shape"] = framework::vectorize2int(inside_tensor.dims());
|
|
attrs["value"] = 0.0f;
|
|
|
|
auto zero_op = framework::OpRegistry::CreateOp(
|
|
"fill_constant", framework::VariableNameMap{},
|
|
{{"Out", {pg_names[param_id]}}}, attrs);
|
|
zero_op->Run(scope, dev_ctx);
|
|
}
|
|
|
|
auto new_inside_name = cur_scope.Rename(inside_grad_name);
|
|
// sum gradient
|
|
|
|
auto sum_op = framework::OpRegistry::CreateOp(
|
|
"sum", {{"X", {pg_names[param_id], new_inside_name}}},
|
|
{{"Out", {pg_names[param_id]}}}, framework::AttributeMap{});
|
|
sum_op->Run(cur_scope, dev_ctx);
|
|
|
|
cur_scope.Rename(new_inside_name, inside_grad_name);
|
|
}
|
|
}
|
|
VLOG(5) << "Accumulate Parameter finished ";
|
|
|
|
// Copy input gradient from inside to outside
|
|
// outside::input_grad[seq_offset: seq_offset + 1] = inside::input_grad
|
|
LinkTensorWithCallback(
|
|
cur_scope, GradVarLists(Inputs(kInputs)), scope, Outputs(kInputGrads),
|
|
[&](const framework::LoDTensor &inside,
|
|
framework::LoDTensor *outside) {
|
|
if (inside.memory_size() == 0) { // IG is not created.
|
|
return;
|
|
}
|
|
if (step_id == 0) { // alloc memory
|
|
outside->Resize(PrependDims(seq_len, inside.dims()));
|
|
outside->mutable_data(dev_ctx.GetPlace(), inside.type());
|
|
}
|
|
|
|
auto dst = outside->Slice(seq_offset, seq_offset + 1);
|
|
framework::CopyFrom(inside, dev_ctx.GetPlace(), dev_ctx, &dst);
|
|
});
|
|
VLOG(5) << "Link outside gradient finished ";
|
|
|
|
if (step_id + 1 == seq_len) { // at_end
|
|
// copy initialize states gradient from inside to outside
|
|
LinkTensorWithCallback(
|
|
cur_scope, GradVarLists(Attr<std::vector<std::string>>(kExStates)),
|
|
scope, Outputs(kInitStateGrads),
|
|
[&](const framework::LoDTensor &inside,
|
|
framework::LoDTensor *outside) {
|
|
outside->Resize(inside.dims());
|
|
outside->mutable_data(dev_ctx.GetPlace(), inside.type());
|
|
framework::CopyFrom(inside, dev_ctx.GetPlace(), dev_ctx, outside);
|
|
});
|
|
VLOG(5) << "Link initialize state gradient finished ";
|
|
}
|
|
scopes.Next();
|
|
}
|
|
}
|
|
|
|
private:
|
|
StepScopes CreateStepScopes(const framework::Scope &scope,
|
|
size_t seq_len) const {
|
|
auto *var = scope.FindVar(Input(kStepScopes));
|
|
PADDLE_ENFORCE(var != nullptr);
|
|
return StepScopes(scope, var->GetMutable<StepScopeVar>(),
|
|
Attr<bool>(kIsTrain), seq_len, true /*is_backward*/);
|
|
}
|
|
|
|
std::unordered_set<std::string> List2Set(
|
|
const std::vector<std::string> &list) const {
|
|
std::unordered_set<std::string> local_var_name_set;
|
|
local_var_name_set.reserve(list.size());
|
|
for (auto &each : list) {
|
|
local_var_name_set.insert(each);
|
|
}
|
|
return local_var_name_set;
|
|
}
|
|
|
|
std::unordered_set<std::string> LocalVarNames(
|
|
const framework::Scope &scope) const {
|
|
return this->List2Set(scope.GetAllNames(false));
|
|
}
|
|
static std::vector<std::string> GradVarLists(
|
|
const std::vector<std::string> &var_names) {
|
|
std::vector<std::string> retv;
|
|
retv.reserve(var_names.size());
|
|
std::transform(var_names.begin(), var_names.end(), std::back_inserter(retv),
|
|
framework::GradVarName);
|
|
return retv;
|
|
}
|
|
};
|
|
|
|
class RecurrentOpProtoMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
RecurrentOpProtoMaker(framework::OpProto *proto,
|
|
framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput(kInputs, "rnn inputs").AsDuplicable();
|
|
AddInput(kInitialStates, "rnn initial states").AsDuplicable();
|
|
AddInput(kParameters,
|
|
"Parameters are used by step block as its input. However, the "
|
|
"input is not a sequence tensor. Every time step, each operator "
|
|
"in step block just use the parameter directly.")
|
|
.AsDuplicable();
|
|
AddOutput(kOutputs,
|
|
"The output sequence of RNN. The sequence length must be same.")
|
|
.AsDuplicable();
|
|
AddOutput(kStepScopes,
|
|
"StepScopes contain all local variables in each time step.");
|
|
AddAttr<std::vector<std::string>>(kExStates,
|
|
string::Sprintf(
|
|
R"DOC(The ex-state variable names.
|
|
The ex-state means the state value in the ex-timestep or the previous time step
|
|
[%s, %s, %s] must be the same order)DOC",
|
|
kExStates, kStates, kInitStateGrads));
|
|
AddAttr<std::vector<std::string>>(
|
|
kStates,
|
|
string::Sprintf(
|
|
"The state variable names. [%s, %s, %s] must be the same order",
|
|
kExStates, kStates, kInitStateGrads));
|
|
AddAttr<framework::BlockDescBind *>(kStepBlock,
|
|
"The step block inside RNN");
|
|
AddAttr<bool>(kReverse, R"DOC(Calculate RNN reversely or not.
|
|
By default reverse=False
|
|
|
|
Assume the input data is [A, B, C, D]
|
|
|
|
if reverse is False:
|
|
the computation of RNN is like
|
|
A B C D
|
|
| | | |
|
|
v v v v
|
|
rnn -----> rnn -----> rnn ----> rnn
|
|
| | | |
|
|
v v v v
|
|
o o o o
|
|
|
|
if reverse is True
|
|
the computation of RNN is like
|
|
A B C D
|
|
| | | |
|
|
v v v v
|
|
rnn <----- rnn <----- rnn <---- rnn
|
|
| | | |
|
|
v v v v
|
|
o o o o
|
|
)DOC").SetDefault(false);
|
|
AddAttr<bool>(kIsTrain, "").SetDefault(true);
|
|
AddComment(R"DOC(
|
|
Static Length Recurrent Operator.
|
|
|
|
The static length recurrent operator can only operate on fixed size sequence
|
|
data, i.e. in each mini-batch, the sequence length of all inputs are the same.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class RecurrentGradOpDescMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
virtual std::unique_ptr<framework::OpDescBind> Apply() const {
|
|
auto *grad = new framework::OpDescBind();
|
|
grad->SetType("recurrent_grad");
|
|
for (auto &input_param : this->InputNames()) {
|
|
grad->SetInput(input_param, this->Input(input_param));
|
|
grad->SetOutput(framework::GradVarName(input_param),
|
|
this->InputGrad(input_param));
|
|
}
|
|
|
|
for (auto &output_param : this->OutputNames()) {
|
|
if (output_param == kStepScopes) {
|
|
grad->SetInput(output_param, this->Output(output_param));
|
|
grad->SetInput(framework::GradVarName(output_param),
|
|
this->Output(output_param));
|
|
} else {
|
|
grad->SetInput(output_param, this->Output(output_param));
|
|
grad->SetInput(framework::GradVarName(output_param),
|
|
this->OutputGrad(output_param));
|
|
}
|
|
}
|
|
grad->SetAttrMap(this->Attrs());
|
|
grad->SetBlockAttr(kStepBlock, *grad_block_[0]);
|
|
|
|
return std::unique_ptr<framework::OpDescBind>(grad);
|
|
}
|
|
};
|
|
|
|
class RecurrentGradOpShapeInference : public framework::InferShapeBase {
|
|
public:
|
|
void operator()(framework::InferShapeContext *ctx) const override {
|
|
std::vector<std::string> input{kInputs, kInitialStates};
|
|
std::vector<std::string> output{kOutputs};
|
|
for (auto &s : input) {
|
|
PADDLE_ENFORCE(ctx->HasInputs(s));
|
|
PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(s)),
|
|
"Cannot find the gradient variable %s",
|
|
framework::GradVarName(s));
|
|
}
|
|
for (auto &s : output) {
|
|
PADDLE_ENFORCE(ctx->HasInputs(s));
|
|
}
|
|
for (auto &s : input) {
|
|
ctx->SetOutputsDim(framework::GradVarName(s), ctx->GetInputsDim(s));
|
|
}
|
|
if (ctx->HasInputs(kParameters)) {
|
|
PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kParameters)));
|
|
ctx->SetOutputsDim(framework::GradVarName(kParameters),
|
|
ctx->GetInputsDim(kParameters));
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
REGISTER_OPERATOR(recurrent, paddle::operators::RecurrentOp,
|
|
paddle::operators::RecurrentOpProtoMaker,
|
|
paddle::operators::RecurrentGradOpDescMaker);
|
|
REGISTER_OPERATOR(recurrent_grad, paddle::operators::RecurrentGradOp,
|
|
paddle::operators::RecurrentGradOpShapeInference);
|