You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
196 lines
7.3 KiB
196 lines
7.3 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/strided_slice_op.h"
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
class StridedSliceOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
|
|
"Input (Input) of slice op should not be null.");
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
|
|
"Output (Out) of slice op should not be null.");
|
|
|
|
auto in_dims = ctx->GetInputDim("Input");
|
|
PADDLE_ENFORCE_LT(in_dims.size(), 7,
|
|
"The rank of input should be less than 7.");
|
|
auto starts = ctx->Attrs().Get<std::vector<int>>("starts");
|
|
auto ends = ctx->Attrs().Get<std::vector<int>>("ends");
|
|
auto strides = ctx->Attrs().Get<std::vector<int>>("strides");
|
|
auto axes = ctx->Attrs().Get<std::vector<int>>("axes");
|
|
|
|
PADDLE_ENFORCE_EQ(starts.size(), ends.size(),
|
|
"starts and ends dim size must to be same");
|
|
PADDLE_ENFORCE_EQ(ends.size(), strides.size(),
|
|
"ends and strides dim size must to be same");
|
|
PADDLE_ENFORCE_EQ(ends.size(), axes.size(),
|
|
"axes, end and start dim size must to be same");
|
|
|
|
// we need to analysis strided slice op is valid for
|
|
// the parameter that we get from python front
|
|
int stride_index, start_index, end_index;
|
|
std::vector<int> out_dims_vector(in_dims.size());
|
|
for (int i = 0; i < in_dims.size(); i++) {
|
|
out_dims_vector[i] = in_dims[i];
|
|
}
|
|
for (size_t i = 0; i < starts.size(); i++) {
|
|
PADDLE_ENFORCE_NE(strides[i], 0, "stride must not to be zero");
|
|
int axes_index = axes[i];
|
|
start_index = starts[i];
|
|
end_index = ends[i];
|
|
stride_index = strides[i];
|
|
int axis_size = in_dims[axes_index];
|
|
if (axis_size < 0) {
|
|
continue;
|
|
}
|
|
|
|
if (start_index < 0) {
|
|
start_index = start_index + axis_size;
|
|
}
|
|
if (end_index < 0) {
|
|
end_index = end_index + axis_size;
|
|
}
|
|
|
|
if (stride_index < 0) {
|
|
start_index = start_index + 1;
|
|
end_index = end_index + 1;
|
|
}
|
|
|
|
bool zero_dim_condition =
|
|
((stride_index < 0 && (start_index <= end_index)) ||
|
|
(stride_index > 0 && (start_index >= end_index)));
|
|
PADDLE_ENFORCE_EQ(zero_dim_condition, false,
|
|
"starts and end must meet requirement in different "
|
|
"stride conditiont");
|
|
int left = std::max(0, std::min(start_index, end_index));
|
|
int right = std::min(axis_size, std::max(start_index, end_index));
|
|
int step = std::abs(stride_index);
|
|
auto out_dims_index = (std::abs(right - left) + step - 1) / step;
|
|
|
|
out_dims_vector[axes_index] = out_dims_index;
|
|
}
|
|
framework::DDim out_dims(framework::make_ddim(out_dims_vector));
|
|
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
ctx->ShareLoD("Input", /*->*/ "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
|
|
ctx.Input<Tensor>("Input")->place());
|
|
}
|
|
};
|
|
|
|
class StridedSliceOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("Input", "Tensor of data to extract slices from.");
|
|
AddOutput("Out", "Sliced data tensor.");
|
|
|
|
AddAttr<std::vector<int>>(
|
|
"axes", "(list<int> Axes stride from the start to the end)");
|
|
AddAttr<std::vector<int>>(
|
|
"starts", "(list<int>) start that the tensor slice start.");
|
|
AddAttr<std::vector<int>>("ends",
|
|
"(list<int>) end that the tensor slice end");
|
|
AddAttr<std::vector<int>>(
|
|
"strides", "(list<int> stride stride from the start to the end)");
|
|
AddComment(R"DOC(
|
|
Strided Slice Operator.
|
|
Instead of calling this op directly most users will want to use the
|
|
NumPy-style slicing syntax.
|
|
For Example:
|
|
data = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='int64')
|
|
y = fluid.layers.strided_slice(data, [0, 1], [1,0], [2, 3], [1, 1])
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class StridedSliceOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true, "Input should not be null");
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
|
|
"Input(Out@GRAD) should not be null");
|
|
auto x_dims = ctx->GetInputDim("Input");
|
|
auto x_grad_name = framework::GradVarName("Input");
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->SetOutputDim(x_grad_name, x_dims);
|
|
}
|
|
}
|
|
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
ctx.Input<framework::Tensor>(framework::GradVarName("Out"))->type(),
|
|
ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class StridedSliceOpGradMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
auto* bind = new framework::OpDesc();
|
|
bind->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
|
|
bind->SetInput("Input", Input("Input"));
|
|
bind->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
|
|
bind->SetAttrMap(Attrs());
|
|
bind->SetType("strided_slice_grad");
|
|
return std::unique_ptr<framework::OpDesc>(bind);
|
|
}
|
|
};
|
|
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
|
|
StridedSliceOpGradNoNeedBufferVarsInference, "Input");
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(strided_slice, ops::StridedSliceOp, ops::StridedSliceOpMaker,
|
|
ops::StridedSliceOpGradMaker);
|
|
REGISTER_OPERATOR(strided_slice_grad, ops::StridedSliceOpGrad,
|
|
ops::StridedSliceOpGradNoNeedBufferVarsInference);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
strided_slice,
|
|
ops::StridedSliceKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::StridedSliceKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
|
ops::StridedSliceKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::StridedSliceKernel<paddle::platform::CPUDeviceContext, double>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
strided_slice_grad,
|
|
ops::StridedSliceGradKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::StridedSliceGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
|
ops::StridedSliceGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::StridedSliceGradKernel<paddle::platform::CPUDeviceContext, double>);
|