You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_dgc_optimizer.py

169 lines
6.4 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle
import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
import paddle.fluid.regularizer as regularizer
import paddle.fluid.clip as clip
import paddle.compat as cpt
from paddle.fluid.backward import append_backward
paddle.enable_static()
class TestDGCMomentumOptimizer(unittest.TestCase):
class MockDGCMomentum(optimizer.DGCMomentumOptimizer):
def get_accumulators(self):
return self._accumulators
def get_velocity_str(self):
return self._u_velocity_acc_str
def check_dgc_momentum_optimizer(self,
dims=[5, 10, 8],
name="momentum",
regularization=None,
use_recompute=False):
init_program = framework.Program()
program = framework.Program()
block = program.global_block()
mul_x = block.create_parameter(
dtype="float32",
shape=[dims[0], dims[1]],
lod_level=0,
name="mul.x",
optimize_attr={'learning_rate': 1.1},
regularizer=None if regularization is not None else
regularizer.L2DecayRegularizer(2e-4))
mul_y = block.create_var(
dtype="float32",
shape=[dims[1], dims[2]],
lod_level=0,
name="mul.y")
mul_out = block.create_var(
dtype="float32",
shape=[dims[0], dims[2]],
lod_level=0,
name="mul.out")
block.append_op(
type="mul",
inputs={"X": mul_x,
"Y": mul_y},
outputs={"Out": mul_out},
attrs={"x_num_col_dims": 1})
learning_rate = 0.01
dgc_momentum_optimizer = self.MockDGCMomentum(
learning_rate=learning_rate,
momentum=0.2,
rampup_begin_step=0,
num_trainers=2,
regularization=regularization,
grad_clip=clip.GradientClipByNorm(1.0))
if use_recompute:
dgc_momentum_optimizer = optimizer.RecomputeOptimizer(
dgc_momentum_optimizer)
dgc_momentum_optimizer._set_checkpoints([])
dgc_momentum_optimizer.get_accumulators = dgc_momentum_optimizer._optimizer.get_accumulators
dgc_momentum_optimizer.get_velocity_str = dgc_momentum_optimizer._optimizer.get_velocity_str
mean_out = block.create_var(
dtype="float32", shape=[1], lod_level=0, name="mean.out")
block.append_op(
type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
# params_grads = append_backward(mean_out)
params_grads = dgc_momentum_optimizer.backward(
mean_out, startup_program=init_program)
with framework.program_guard(program, init_program):
opts = dgc_momentum_optimizer.apply_gradients(params_grads)
accumulator_count = 1 if name == "momentum" else 2
self.assertEqual(len(params_grads), 1)
self.assertEqual(
len(dgc_momentum_optimizer.get_accumulators()), accumulator_count)
self.assertEqual(len(opts), 2)
sgd_op = opts[-1]
self.assertEqual([op.type for op in opts], ["scale", name])
self.assertFalse(sgd_op.attr('use_nesterov'))
# Check accumulators
accumulators = dgc_momentum_optimizer.get_accumulators()
self.assertEqual(len(accumulators), accumulator_count)
self.assertTrue(
dgc_momentum_optimizer.get_velocity_str() in accumulators)
velocity_acc = accumulators[dgc_momentum_optimizer.get_velocity_str()]
self.assertEqual(len(velocity_acc), 1)
self.assertTrue(mul_x.name in velocity_acc)
# Check init_program
# dgc not apply include: lr, dgc(count, nranks, begin step), (u,)
# dgc apply include: lr, dgc(count, nranks, begin_step), (u,v,k,encode,gather)
init_ops_count = 5 if name == "momentum" else 9
init_ops = init_program.global_block().ops
self.assertEqual(len(init_ops), init_ops_count)
self.assertEqual(init_ops[0].type, "fill_constant")
self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
# check dgc op regularization coeff
train_ops = program.global_block().ops
for op in train_ops:
if op.type == "dgc":
coeff = 2e-4 if regularization is None else 1e-4
self.assertAlmostEqual(op.attr('regular_coeff'), coeff)
print("dgc regular_coeff=" + str(coeff))
def test_tpyeError(self):
# the type of DGCMomentumOptimizer(grad_clip=) must be 'GradientClipByNorm'
with self.assertRaises(TypeError):
dgc_momentum_optimizer = self.MockDGCMomentum(
learning_rate=0.01,
momentum=0.2,
rampup_begin_step=0,
num_trainers=2,
grad_clip=clip.GradientClipByGlobalNorm(1.0))
def test_momentum_without_dgc(self):
self.check_dgc_momentum_optimizer(
regularization=regularizer.L1Decay(1e-4))
def test_momentum_with_dgc(self):
# 16 * 1024 = 16384, use dgc momentum
self.check_dgc_momentum_optimizer(
dims=[16, 1024, 8],
name="dgc_momentum",
regularization=regularizer.L2Decay(1e-4))
# check param.regularizer in dgc
self.check_dgc_momentum_optimizer(
dims=[16, 1024, 8], name="dgc_momentum")
def test_momentum_with_dgc_recompute(self):
# 16 * 1024 = 16384, use dgc momentum
self.check_dgc_momentum_optimizer(
dims=[16, 1024, 8],
name="dgc_momentum",
regularization=regularizer.L2Decay(1e-4),
use_recompute=True)
if __name__ == '__main__':
unittest.main()