You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
271 lines
9.5 KiB
271 lines
9.5 KiB
#Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
from op_test import OpTest
|
|
from paddle.fluid import Program, program_guard
|
|
from paddle.fluid.framework import convert_np_dtype_to_dtype_
|
|
|
|
|
|
# Situation 1: Attr(shape) is a list(without tensor)
|
|
class TestEmptyOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "empty"
|
|
self.init_config()
|
|
|
|
def test_check_output(self):
|
|
self.check_output_customized(self.verify_output)
|
|
|
|
def verify_output(self, outs):
|
|
data_type = outs[0].dtype
|
|
if data_type in ['float32', 'float64', 'int32', 'int64']:
|
|
max_value = np.nanmax(outs[0])
|
|
min_value = np.nanmin(outs[0])
|
|
|
|
always_full_zero = max_value == 0.0 and min_value == 0.0
|
|
always_non_full_zero = max_value > min_value
|
|
self.assertTrue(always_full_zero or always_non_full_zero,
|
|
'always_full_zero or always_non_full_zero.')
|
|
elif data_type in ['bool']:
|
|
total_num = outs[0].size
|
|
true_num = np.sum(outs[0] == True)
|
|
false_num = np.sum(outs[0] == False)
|
|
self.assertTrue(total_num == true_num + false_num,
|
|
'The value should always be True or False.')
|
|
else:
|
|
self.assertTrue(False, 'invalid data type')
|
|
|
|
def init_config(self):
|
|
shape = [500, 3]
|
|
dtype = 'float32'
|
|
dtype_inner = convert_np_dtype_to_dtype_(dtype)
|
|
self.attrs = {'shape': shape, 'dtype': dtype_inner}
|
|
self.inputs = {}
|
|
self.outputs = {'Out': np.zeros(shape).astype(dtype)}
|
|
|
|
|
|
class TestEmptyOp2(TestEmptyOp):
|
|
def init_config(self):
|
|
shape = [500, 3]
|
|
dtype = 'float64'
|
|
dtype_inner = convert_np_dtype_to_dtype_(dtype)
|
|
self.attrs = {'shape': shape, 'dtype': dtype_inner}
|
|
self.inputs = {}
|
|
self.outputs = {'Out': np.zeros(shape).astype(dtype)}
|
|
|
|
|
|
class TestEmptyOp3(TestEmptyOp):
|
|
def init_config(self):
|
|
shape = [500, 3]
|
|
dtype = 'int32'
|
|
dtype_inner = convert_np_dtype_to_dtype_(dtype)
|
|
self.attrs = {'shape': shape, 'dtype': dtype_inner}
|
|
self.inputs = {}
|
|
self.outputs = {'Out': np.zeros(shape).astype(dtype)}
|
|
|
|
|
|
class TestEmptyOp4(TestEmptyOp):
|
|
def init_config(self):
|
|
shape = [500, 3]
|
|
dtype = 'int64'
|
|
dtype_inner = convert_np_dtype_to_dtype_(dtype)
|
|
self.attrs = {'shape': shape, 'dtype': dtype_inner}
|
|
self.inputs = {}
|
|
self.outputs = {'Out': np.zeros(shape).astype(dtype)}
|
|
|
|
|
|
class TestEmptyOp5(TestEmptyOp):
|
|
def init_config(self):
|
|
shape = [500, 3]
|
|
dtype = 'bool'
|
|
dtype_inner = convert_np_dtype_to_dtype_(dtype)
|
|
self.attrs = {'shape': shape, 'dtype': dtype_inner}
|
|
self.inputs = {}
|
|
self.outputs = {'Out': np.zeros(shape).astype(dtype)}
|
|
|
|
|
|
# Situation 2: shape is a tensor
|
|
class TestEmptyOp_ShapeTensor(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "empty"
|
|
self.init_config()
|
|
|
|
def init_config(self):
|
|
self.shape = [500, 3]
|
|
dtype = 'float32'
|
|
dtype_inner = convert_np_dtype_to_dtype_(dtype)
|
|
self.attrs = {'dtype': dtype_inner}
|
|
self.inputs = {"ShapeTensor": np.array(self.shape).astype("int32")}
|
|
self.outputs = {'Out': np.zeros(self.shape).astype(dtype)}
|
|
|
|
def test_check_output(self):
|
|
self.check_output_customized(self.verify_output)
|
|
|
|
def verify_output(self, outs):
|
|
data_type = outs[0].dtype
|
|
if data_type in ['float32', 'float64', 'int32', 'int64']:
|
|
max_value = np.nanmax(outs[0])
|
|
min_value = np.nanmin(outs[0])
|
|
|
|
always_full_zero = max_value == 0.0 and min_value == 0.0
|
|
always_non_full_zero = max_value > min_value
|
|
self.assertTrue(always_full_zero or always_non_full_zero,
|
|
'always_full_zero or always_non_full_zero.')
|
|
elif data_type in ['bool']:
|
|
total_num = outs[0].size
|
|
true_num = np.sum(outs[0] == True)
|
|
false_num = np.sum(outs[0] == False)
|
|
self.assertTrue(total_num == true_num + false_num,
|
|
'The value should always be True or False.')
|
|
else:
|
|
self.assertTrue(False, 'invalid data type')
|
|
|
|
|
|
# Situation 3: Attr(shape) is a list(with tensor)
|
|
class TestEmptyOp_ShapeTensorList(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "empty"
|
|
self.init_config()
|
|
|
|
def init_config(self):
|
|
self.shape = [123, 92]
|
|
self.infer_shape = [-1, 92]
|
|
|
|
dtype = 'float32'
|
|
dtype_inner = convert_np_dtype_to_dtype_(dtype)
|
|
|
|
shape_tensor_list = []
|
|
for index, ele in enumerate(self.shape):
|
|
shape_tensor_list.append(("x" + str(index), np.ones(
|
|
(1)).astype('int32') * ele))
|
|
|
|
self.inputs = {"ShapeTensorList": shape_tensor_list}
|
|
self.attrs = {'shape': self.infer_shape, 'dtype': dtype_inner}
|
|
self.outputs = {'Out': np.zeros(self.shape).astype(dtype)}
|
|
|
|
def test_check_output(self):
|
|
self.check_output_customized(self.verify_output)
|
|
|
|
def verify_output(self, outs):
|
|
data_type = outs[0].dtype
|
|
if data_type in ['float32', 'float64', 'int32', 'int64']:
|
|
max_value = np.nanmax(outs[0])
|
|
min_value = np.nanmin(outs[0])
|
|
|
|
always_full_zero = max_value == 0.0 and min_value == 0.0
|
|
always_non_full_zero = max_value > min_value
|
|
self.assertTrue(always_full_zero or always_non_full_zero,
|
|
'always_full_zero or always_non_full_zero.')
|
|
elif data_type in ['bool']:
|
|
total_num = outs[0].size
|
|
true_num = np.sum(outs[0] == True)
|
|
false_num = np.sum(outs[0] == False)
|
|
self.assertTrue(total_num == true_num + false_num,
|
|
'The value should always be True or False.')
|
|
else:
|
|
self.assertTrue(False, 'invalid data type')
|
|
|
|
|
|
class TestEmptyAPI(unittest.TestCase):
|
|
def __check_out__(self, out, dtype='float32'):
|
|
max_value = np.nanmax(np.array(out))
|
|
min_value = np.nanmin(np.array(out))
|
|
always_non_full_zero = max_value > min_value
|
|
always_full_zero = max_value == 0.0 and min_value == 0.0
|
|
self.assertTrue(always_full_zero or always_non_full_zero,
|
|
'always_full_zero or always_non_full_zero.')
|
|
|
|
def test_dygraph_api_out(self):
|
|
paddle.disable_static()
|
|
shape = [200, 3]
|
|
out = paddle.empty(shape=shape)
|
|
self.__check_out__(out)
|
|
paddle.enable_static()
|
|
|
|
def test_dygraph_api_out_2(self):
|
|
paddle.disable_static()
|
|
shape_data = np.array([200, 3]).astype('int32')
|
|
shape = paddle.to_tensor(shape_data)
|
|
out = paddle.empty(shape=shape)
|
|
self.__check_out__(out)
|
|
paddle.enable_static()
|
|
|
|
def test_dygraph_api_out_3(self):
|
|
paddle.disable_static()
|
|
shape_data = np.array([200, 3]).astype('int64')
|
|
shape = paddle.to_tensor(shape_data)
|
|
out = paddle.empty(shape=shape)
|
|
self.__check_out__(out)
|
|
paddle.enable_static()
|
|
|
|
def test_dygraph_api_attr(self):
|
|
paddle.disable_static()
|
|
shape = [200, 3]
|
|
dtype = 'float64'
|
|
out = paddle.empty(shape=shape, dtype=dtype)
|
|
self.__check_out__(out, dtype)
|
|
paddle.enable_static()
|
|
|
|
def test_static_graph(self):
|
|
dtype = 'float64'
|
|
|
|
positive_2_int32 = fluid.layers.fill_constant([1], "int32", 3)
|
|
positive_2_int64 = fluid.layers.fill_constant([1], "int64", 3)
|
|
|
|
shape_tensor_int32 = fluid.data(
|
|
name="shape_tensor_int32", shape=[2], dtype="int32")
|
|
shape_tensor_int64 = fluid.data(
|
|
name="shape_tensor_int64", shape=[2], dtype="int64")
|
|
|
|
out_1 = paddle.empty(shape=[200, 3], dtype=dtype)
|
|
out_2 = paddle.empty(shape=shape_tensor_int32, dtype=dtype)
|
|
out_3 = paddle.empty(shape=shape_tensor_int64, dtype=dtype)
|
|
out_4 = paddle.empty(shape=[200, positive_2_int32], dtype=dtype)
|
|
out_5 = paddle.empty(shape=[200, positive_2_int64], dtype=dtype)
|
|
|
|
place = paddle.CPUPlace()
|
|
exe = paddle.static.Executor(place)
|
|
res_1, res_2, res_3, res_4, res_5 = exe.run(
|
|
fluid.default_main_program(),
|
|
feed={
|
|
"shape_tensor_int32": np.array([200, 3]).astype("int32"),
|
|
"shape_tensor_int64": np.array([200, 3]).astype("int64"),
|
|
},
|
|
fetch_list=[out_1, out_2, out_3, out_4, out_5])
|
|
|
|
self.__check_out__(res_1, dtype)
|
|
self.__check_out__(res_2, dtype)
|
|
self.__check_out__(res_3, dtype)
|
|
self.__check_out__(res_4, dtype)
|
|
self.__check_out__(res_5, dtype)
|
|
|
|
|
|
class TestEmptyError(unittest.TestCase):
|
|
def test_attr(self):
|
|
def test_dtype():
|
|
shape = [200, 3]
|
|
dtype = 'uint8'
|
|
result = paddle.empty(shape=shape, dtype=dtype)
|
|
|
|
self.assertRaises(TypeError, test_dtype)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|