You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_fill_constant_op.py

436 lines
14 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
import numpy as np
from paddle.fluid import compiler, Program, program_guard
# Situation 1: Attr(shape) is a list(without tensor)
class TestFillConstantOp1(OpTest):
def setUp(self):
'''Test fill_constant op with specified value
'''
self.op_type = "fill_constant"
self.inputs = {}
self.attrs = {'shape': [123, 92], 'value': 3.8}
self.outputs = {'Out': np.full((123, 92), 3.8)}
def test_check_output(self):
self.check_output()
class TestFillConstantOp2(OpTest):
def setUp(self):
'''Test fill_constant op with default value
'''
self.op_type = "fill_constant"
self.inputs = {}
self.attrs = {'shape': [123, 92]}
self.outputs = {'Out': np.full((123, 92), 0.0)}
def test_check_output(self):
self.check_output()
class TestFillConstantOp3(OpTest):
def setUp(self):
'''Test fill_constant op with specified int64 value
'''
self.op_type = "fill_constant"
self.inputs = {}
self.attrs = {'shape': [123, 92], 'value': 10000000000}
self.outputs = {'Out': np.full((123, 92), 10000000000)}
def test_check_output(self):
self.check_output()
class TestFillConstantOp4(OpTest):
def setUp(self):
'''Test fill_constant op with specified int value
'''
self.op_type = "fill_constant"
self.inputs = {}
self.attrs = {'shape': [123, 92], 'value': 3}
self.outputs = {'Out': np.full((123, 92), 3)}
def test_check_output(self):
self.check_output()
class TestFillConstantOpWithSelectedRows(unittest.TestCase):
def check_with_place(self, place):
scope = core.Scope()
# create Out Variable
out = scope.var('Out').get_selected_rows()
# create and run fill_constant_op operator
fill_constant_op = Operator(
"fill_constant", shape=[123, 92], value=3.8, Out='Out')
fill_constant_op.run(scope, place)
# get result from Out
result_array = np.array(out.get_tensor())
full_array = np.full((123, 92), 3.8, 'float32')
self.assertTrue(np.array_equal(result_array, full_array))
def test_fill_constant_with_selected_rows(self):
places = [core.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(core.CUDAPlace(0))
for place in places:
self.check_with_place(place)
# Situation 2: Attr(shape) is a list(with tensor)
class TestFillConstantOp1_ShapeTensorList(OpTest):
def setUp(self):
'''Test fill_constant op with specified value
'''
self.op_type = "fill_constant"
self.init_data()
shape_tensor_list = []
for index, ele in enumerate(self.shape):
shape_tensor_list.append(("x" + str(index), np.ones(
(1)).astype('int32') * ele))
self.inputs = {"ShapeTensorList": shape_tensor_list}
self.attrs = {'shape': self.infer_shape, 'value': self.value}
self.outputs = {'Out': np.full(self.shape, self.value)}
def init_data(self):
self.shape = [123, 92]
self.infer_shape = [-1, 92]
self.value = 3.8
def test_check_output(self):
self.check_output()
class TestFillConstantOp2_ShapeTensorList(OpTest):
def setUp(self):
'''Test fill_constant op with default value
'''
self.op_type = "fill_constant"
self.init_data()
shape_tensor_list = []
for index, ele in enumerate(self.shape):
shape_tensor_list.append(("x" + str(index), np.ones(
(1)).astype('int32') * ele))
self.inputs = {"ShapeTensorList": shape_tensor_list}
self.attrs = {'shape': self.infer_shape}
self.outputs = {'Out': np.full(self.shape, 0.0)}
def init_data(self):
self.shape = [123, 92]
self.infer_shape = [-1, -1]
def test_check_output(self):
self.check_output()
class TestFillConstantOp3_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
def init_data(self):
self.shape = [123, 92]
self.infer_shape = [123, -1]
self.value = 10000000000
class TestFillConstantOp4_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
def init_data(self):
self.shape = [123, 92]
self.infer_shape = [123, -1]
self.value = 3
# Situation 3: shape is a tensor
class TestFillConstantOp1_ShapeTensor(OpTest):
def setUp(self):
'''Test fill_constant op with specified value
'''
self.op_type = "fill_constant"
self.init_data()
self.inputs = {"ShapeTensor": np.array(self.shape).astype("int32")}
self.attrs = {'value': self.value}
self.outputs = {'Out': np.full(self.shape, self.value)}
def init_data(self):
self.shape = [123, 92]
self.value = 3.8
def test_check_output(self):
self.check_output()
# Situation 4: value is a tensor
class TestFillConstantOp1_ValueTensor(OpTest):
def setUp(self):
'''Test fill_constant op with specified value
'''
self.op_type = "fill_constant"
self.init_data()
self.inputs = {
"ShapeTensor": np.array(self.shape).astype("int32"),
'ValueTensor': np.array([self.value]).astype("float32")
}
self.attrs = {'value': self.value + 1.0}
self.outputs = {'Out': np.full(self.shape, self.value)}
def init_data(self):
self.shape = [123, 92]
self.value = 3.8
self.dtype = np.float32
def test_check_output(self):
self.check_output()
# Situation 5: value is a tensor
class TestFillConstantOp2_ValueTensor(OpTest):
def setUp(self):
'''Test fill_constant op with specified value
'''
self.op_type = "fill_constant"
self.init_data()
self.inputs = {
"ShapeTensor": np.array(self.shape).astype("int32"),
'ValueTensor': np.array([self.value]).astype("int32")
}
self.attrs = {'value': self.value, 'dtype': 2}
self.outputs = {'Out': np.full(self.shape, self.value)}
def init_data(self):
self.shape = [123, 92]
self.value = 3
self.dtype = np.int32
def test_check_output(self):
self.check_output()
# Test python API
class TestFillConstantAPI(unittest.TestCase):
def test_api(self):
positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2)
positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
shape_tensor_int32 = fluid.data(
name="shape_tensor_int32", shape=[2], dtype="int32")
shape_tensor_int64 = fluid.data(
name="shape_tensor_int64", shape=[2], dtype="int64")
out_1 = fluid.layers.fill_constant(
shape=[1, 2], dtype="float32", value=1.1)
out_2 = fluid.layers.fill_constant(
shape=[1, positive_2_int32], dtype="float32", value=1.1)
out_3 = fluid.layers.fill_constant(
shape=[1, positive_2_int64], dtype="float32", value=1.1)
out_4 = fluid.layers.fill_constant(
shape=shape_tensor_int32, dtype="float32", value=1.1)
out_5 = fluid.layers.fill_constant(
shape=shape_tensor_int64, dtype="float32", value=1.1)
out_6 = fluid.layers.fill_constant(
shape=shape_tensor_int64, dtype=np.float32, value=1.1)
val1 = fluid.layers.fill_constant(
shape=[1], dtype=np.float32, value=1.1)
val2 = fluid.layers.fill_constant(
shape=[1], dtype=np.float64, value=1.1)
out_7 = fluid.layers.fill_constant(
shape=shape_tensor_int64, dtype=np.float32, value=val1)
out_8 = fluid.layers.fill_constant(
shape=shape_tensor_int64, dtype=np.float32, value=val2)
exe = fluid.Executor(place=fluid.CPUPlace())
res_1, res_2, res_3, res_4, res_5, res_6, res_7, res_8 = exe.run(
fluid.default_main_program(),
feed={
"shape_tensor_int32": np.array([1, 2]).astype("int32"),
"shape_tensor_int64": np.array([1, 2]).astype("int64"),
},
fetch_list=[
out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8
])
assert np.array_equal(res_1, np.full([1, 2], 1.1, dtype="float32"))
assert np.array_equal(res_2, np.full([1, 2], 1.1, dtype="float32"))
assert np.array_equal(res_3, np.full([1, 2], 1.1, dtype="float32"))
assert np.array_equal(res_4, np.full([1, 2], 1.1, dtype="float32"))
assert np.array_equal(res_5, np.full([1, 2], 1.1, dtype="float32"))
assert np.array_equal(res_6, np.full([1, 2], 1.1, dtype="float32"))
assert np.array_equal(res_7, np.full([1, 2], 1.1, dtype="float32"))
assert np.array_equal(res_8, np.full([1, 2], 1.1, dtype="float32"))
class TestFillConstantImperative(unittest.TestCase):
def test_api(self):
with fluid.dygraph.guard():
data1 = np.array([1, 2]).astype('int32')
data2 = np.array([1.1]).astype('float32')
data3 = np.array([88]).astype('int32')
shape = fluid.dygraph.to_variable(data1)
val = fluid.dygraph.to_variable(data2)
value = fluid.dygraph.to_variable(data3)
res1 = fluid.layers.fill_constant(
shape=[1, 2], dtype='float32', value=1.1)
res2 = fluid.layers.fill_constant(
shape=shape, dtype='float32', value=1.1)
res3 = fluid.layers.fill_constant(
shape=shape, dtype='float32', value=val)
res4 = fluid.layers.fill_constant(
shape=shape, dtype='int32', value=value)
assert np.array_equal(
res1.numpy(), np.full(
[1, 2], 1.1, dtype="float32"))
assert np.array_equal(
res2.numpy(), np.full(
[1, 2], 1.1, dtype="float32"))
assert np.array_equal(
res3.numpy(), np.full(
[1, 2], 1.1, dtype="float32"))
assert np.array_equal(
res4.numpy(), np.full(
[1, 2], 88, dtype="int32"))
def test_nan(self):
with fluid.dygraph.guard():
res = fluid.layers.fill_constant([1], 'float32', np.nan)
self.assertTrue(np.isnan(res.numpy().item(0)))
def test_inf(self):
with fluid.dygraph.guard():
res = fluid.layers.fill_constant([1], 'float32', np.inf)
self.assertTrue(np.isinf(res.numpy().item(0)))
def test_ninf(self):
with fluid.dygraph.guard():
res = fluid.layers.fill_constant([1], 'float32', np.NINF)
self.assertTrue(np.isinf(res.numpy().item(0)))
self.assertEqual(np.NINF, res.numpy().item(0))
class TestFillConstantOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
#for ci coverage
x1 = fluid.layers.data(name='x1', shape=[1], dtype="int16")
self.assertRaises(
TypeError,
fluid.layers.fill_constant,
shape=[1],
value=5,
dtype='uint4')
self.assertRaises(
TypeError,
fluid.layers.fill_constant,
shape=[1],
value=5,
dtype='int16',
out=x1)
self.assertRaises(
TypeError,
fluid.layers.fill_constant,
shape=[1.1],
value=5,
dtype='float32',
out=x1)
# The argument dtype of fill_constant_op must be one of bool, float16,
#float32, float64, int32 or int64
x2 = fluid.layers.data(name='x2', shape=[1], dtype="int32")
self.assertRaises(
TypeError,
fluid.layers.fill_constant,
shape=[1],
value=5,
dtype='uint8')
self.assertRaises(
TypeError,
fluid.layers.fill_constant,
shape=[1],
value=5,
dtype='float64',
out=x2)
x3 = np.random.randn(100, 100).astype('int32')
self.assertRaises(
TypeError,
fluid.layers.fill_constant,
shape=[100, 100],
value=5,
dtype='float64',
out=x3)
# The argument shape's type of fill_constant_op must be list, tuple or Variable.
def test_shape_type():
fluid.layers.fill_constant(shape=1, dtype="float32", value=1)
self.assertRaises(TypeError, test_shape_type)
# The argument shape's size of fill_constant_op must not be 0.
def test_shape_size():
fluid.layers.fill_constant(shape=[], dtype="float32", value=1)
self.assertRaises(AssertionError, test_shape_size)
# The shape dtype of fill_constant_op must be int32 or int64.
def test_shape_tensor_dtype():
shape = fluid.data(
name="shape_tensor", shape=[2], dtype="float32")
fluid.layers.fill_constant(
shape=shape, dtype="float32", value=1)
self.assertRaises(TypeError, test_shape_tensor_dtype)
def test_shape_tensor_list_dtype():
shape = fluid.data(
name="shape_tensor_list", shape=[1], dtype="bool")
fluid.layers.fill_constant(
shape=[shape, 2], dtype="float32", value=1)
self.assertRaises(TypeError, test_shape_tensor_list_dtype)
if __name__ == "__main__":
unittest.main()