You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_isfinite_op.py

147 lines
4.0 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from op_test import OpTest
from paddle.fluid import compiler, Program, program_guard
class TestInf(OpTest):
def setUp(self):
self.op_type = "isinf"
self.dtype = np.float32
self.init_dtype()
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
x[0] = np.inf
x[-1] = np.inf
self.inputs = {'X': x}
self.outputs = {'Out': np.array(True).astype(self.dtype)}
def init_dtype(self):
pass
def test_output(self):
self.check_output()
class TestRaiseError(unittest.TestCase):
def test_errors(self):
def test_type():
fluid.layers.isfinite([10])
self.assertRaises(TypeError, test_type)
def test_dtype():
data = fluid.data(shape=[10], dtype="float16", name="input")
fluid.layers.isfinite(data)
self.assertRaises(TypeError, test_dtype)
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestFP16Inf(TestInf):
def init_dtype(self):
self.dtype = np.float16
class TestNAN(OpTest):
def setUp(self):
self.op_type = "isnan"
self.dtype = np.float32
self.init_dtype()
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
x[0] = np.nan
x[-1] = np.nan
self.inputs = {'X': x}
self.outputs = {'Out': np.array(True).astype(self.dtype)}
def init_dtype(self):
pass
def test_output(self):
self.check_output()
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestFP16NAN(TestNAN):
def init_dtype(self):
self.dtype = np.float16
class TestIsfinite(OpTest):
def setUp(self):
self.op_type = "isfinite"
self.dtype = np.float32
self.init_dtype()
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
x[0] = np.inf
x[-1] = np.nan
out = np.isinf(x) | np.isnan(x)
self.inputs = {'X': x}
self.outputs = {'Out': np.array(False).astype(self.dtype)}
def init_dtype(self):
pass
def test_output(self):
self.check_output()
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestFP16Isfinite(TestIsfinite):
def init_dtype(self):
self.dtype = np.float16
class BadInputTest(unittest.TestCase):
def test_error(self):
with fluid.program_guard(fluid.Program()):
def test_has_inf_bad_x():
data = [1, 2, 3]
result = fluid.layers.has_inf(data)
self.assertRaises(TypeError, test_has_inf_bad_x)
def test_has_nan_bad_x():
data = [1, 2, 3]
result = fluid.layers.has_nan(data)
self.assertRaises(TypeError, test_has_nan_bad_x)
with fluid.dygraph.guard():
data = paddle.zeros([2, 3])
result = paddle.fluid.layers.has_inf(data)
expect_value = np.array([False])
self.assertEqual((result.numpy() == expect_value).all(), True)
result = paddle.fluid.layers.has_nan(data)
self.assertEqual((result.numpy() == expect_value).all(), True)
if __name__ == '__main__':
unittest.main()