You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_linear_interp_op.py

414 lines
14 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import platform
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
from paddle.nn.functional import interpolate
def linear_interp_np(input,
out_w,
out_size=None,
actual_shape=None,
align_corners=True,
align_mode=0,
data_layout='NCHW'):
if data_layout == "NHWC":
input = np.transpose(input, (0, 2, 1)) # NHWC => NCHW
if out_size is not None:
out_w = out_size[0]
if actual_shape is not None:
out_w = actual_shape[0]
batch_size, channel, in_w = input.shape
ratio_w = 0.0
if out_w > 1:
if (align_corners):
ratio_w = (in_w - 1.0) / (out_w - 1.0)
else:
ratio_w = 1.0 * in_w / out_w
out = np.zeros((batch_size, channel, out_w))
for j in range(out_w):
if (align_mode == 0 and not align_corners):
w = int(ratio_w * (j + 0.5) - 0.5)
else:
w = int(ratio_w * j)
w = max(0, w)
wid = 1 if w < in_w - 1 else 0
if (align_mode == 0 and not align_corners):
idx_src_w = max(ratio_w * (j + 0.5) - 0.5, 0)
w1lambda = idx_src_w - w
else:
w1lambda = ratio_w * j - w
w2lambda = 1.0 - w1lambda
out[:, :, j] = w2lambda * input[:, :, w] + w1lambda * input[:, :, w +
wid]
if data_layout == "NHWC":
out = np.transpose(out, (0, 2, 1)) # NCHW => NHWC
return out.astype(input.dtype)
class TestLinearInterpOp(OpTest):
def setUp(self):
self.out_size = None
self.actual_shape = None
self.data_layout = 'NCHW'
self.init_test_case()
self.op_type = "linear_interp"
input_np = np.random.random(self.input_shape).astype("float64")
if self.data_layout == "NCHW":
in_w = self.input_shape[2]
else:
in_w = self.input_shape[1]
if self.scale > 0:
out_w = int(in_w * self.scale)
else:
out_w = self.out_w
output_np = linear_interp_np(input_np, out_w, self.out_size,
self.actual_shape, self.align_corners,
self.align_mode, self.data_layout)
self.inputs = {'X': input_np}
if self.out_size is not None:
self.inputs['OutSize'] = self.out_size
if self.actual_shape is not None:
self.inputs['OutSize'] = self.actual_shape
self.attrs = {
'out_w': self.out_w,
'scale': self.scale,
'interp_method': self.interp_method,
'align_corners': self.align_corners,
'align_mode': self.align_mode,
'data_layout': self.data_layout
}
self.outputs = {'Out': output_np}
def test_check_output(self):
if platform.system() == "Linux":
self.check_output(atol=1e-7)
else:
self.check_output(atol=1e-5)
def test_check_grad(self):
self.check_grad(['X'], 'Out', in_place=True)
def init_test_case(self):
self.interp_method = 'linear'
self.input_shape = [1, 3, 100]
self.out_w = 50
self.scale = 0.
self.out_size = np.array([50, ]).astype("int32")
self.align_corners = False
self.align_mode = 1
class TestLinearInterpOpDataLayout(TestLinearInterpOp):
def init_test_case(self):
self.interp_method = 'linear'
self.input_shape = [1, 3, 100]
self.out_w = 50
self.scale = 0.
self.out_size = np.array([50, ]).astype("int32")
self.align_corners = False
self.align_mode = 1
self.data_layout = 'NHWC'
class TestLinearInterpOpAlignMode(TestLinearInterpOp):
def init_test_case(self):
self.interp_method = 'linear'
self.input_shape = [1, 3, 100]
self.out_w = 50
self.scale = 0.
self.out_size = np.array([50, ]).astype("int32")
self.align_corners = False
self.align_mode = 0
class TestLinearInterpOpScale(TestLinearInterpOp):
def init_test_case(self):
self.interp_method = 'linear'
self.input_shape = [1, 3, 100]
self.out_w = 50
self.scale = 0.5
self.out_size = np.array([50, ]).astype("int32")
self.align_corners = False
self.align_mode = 0
class TestLinearInterpOpSizeTensor(TestLinearInterpOp):
def setUp(self):
self.out_size = None
self.actual_shape = None
self.data_layout = 'NCHW'
self.init_test_case()
self.op_type = "linear_interp"
input_np = np.random.random(self.input_shape).astype("float64")
self.shape_by_1Dtensor = False
self.scale_by_1Dtensor = False
if self.data_layout == "NCHW":
in_w = self.input_shape[2]
else:
in_w = self.input_shape[1]
if self.scale > 0:
out_w = int(in_w * self.scale)
else:
out_w = self.out_w
output_np = linear_interp_np(input_np, out_w, self.out_size,
self.actual_shape, self.align_corners,
self.align_mode, self.data_layout)
self.inputs = {'X': input_np}
if self.out_size is not None and self.shape_by_1Dtensor:
self.inputs['OutSize'] = self.out_size
elif self.actual_shape is not None and self.shape_by_1Dtensor:
self.inputs['OutSize'] = self.actual_shape
else:
size_tensor = []
for index, ele in enumerate(self.out_size):
size_tensor.append(("x" + str(index), np.ones(
(1)).astype('int32') * ele))
self.inputs['SizeTensor'] = size_tensor
self.attrs = {
'out_w': self.out_w,
'scale': self.scale,
'interp_method': self.interp_method,
'align_corners': self.align_corners,
'align_mode': self.align_mode,
'data_layout': self.data_layout
}
self.outputs = {'Out': output_np}
class TestResizeLinearAPI(unittest.TestCase):
def test_case(self):
x = fluid.data(name="x", shape=[1, 3, 64], dtype="float32")
dim = fluid.data(name="dim", shape=[1], dtype="int32")
shape_tensor = fluid.data(name="shape_tensor", shape=[1], dtype="int32")
actual_size = fluid.data(name="actual_size", shape=[1], dtype="int32")
scale_tensor = fluid.data(
name="scale_tensor", shape=[1], dtype="float32")
out1 = fluid.layers.resize_linear(
x, out_shape=[128, ], align_mode=1, align_corners=False)
out2 = fluid.layers.resize_linear(
x, out_shape=[128], align_mode=1, align_corners=False)
out3 = fluid.layers.resize_linear(
x, out_shape=shape_tensor, align_mode=1, align_corners=False)
out4 = fluid.layers.resize_linear(
x,
out_shape=[128, ],
actual_shape=actual_size,
align_mode=1,
align_corners=False)
out5 = fluid.layers.resize_linear(
x, scale=scale_tensor, align_mode=1, align_corners=False)
out6 = interpolate(
x,
scale_factor=scale_tensor,
mode='linear',
align_mode=1,
align_corners=False,
data_format='NCW')
out7 = interpolate(
x,
size=[128, ],
mode='linear',
align_mode=1,
align_corners=False,
data_format='NCW')
out8 = interpolate(
x,
size=shape_tensor,
mode='linear',
align_mode=1,
align_corners=False,
data_format='NCW')
x_data = np.random.random((1, 3, 64)).astype("float32")
dim_data = np.array([128]).astype("int32")
shape_data = np.array([128, ]).astype("int32")
actual_size_data = np.array([128, ]).astype("int32")
scale_data = np.array([2.0]).astype("float32")
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
results = exe.run(
fluid.default_main_program(),
feed={
"x": x_data,
"dim": dim_data,
"shape_tensor": shape_data,
"actual_size": actual_size_data,
"scale_tensor": scale_data
},
fetch_list=[out1, out2, out3, out4, out5, out6, out7, out8],
return_numpy=True)
expect_res = linear_interp_np(
x_data, out_w=128, align_mode=1, align_corners=False)
for res in results:
self.assertTrue(np.allclose(res, expect_res))
class TestLinearInterpOpAPI2_0(unittest.TestCase):
def test_case(self):
# dygraph
x_data = np.random.random((1, 3, 128)).astype("float32")
us_1 = paddle.nn.Upsample(
size=[64, ],
mode='linear',
align_mode=1,
align_corners=False,
data_format='NCW')
with fluid.dygraph.guard():
x = fluid.dygraph.to_variable(x_data)
interp = us_1(x)
expect = linear_interp_np(
x_data, out_w=64, align_mode=1, align_corners=False)
self.assertTrue(np.allclose(interp.numpy(), expect))
class TestResizeLinearOpUint8(OpTest):
def setUp(self):
self.out_size = None
self.actual_shape = None
self.init_test_case()
self.op_type = "linear_interp"
input_np = np.random.random(self.input_shape).astype("uint8")
if self.scale > 0:
out_w = int(self.input_shape[3] * self.scale)
else:
out_w = self.out_w
output_np = linear_interp_np(input_np, out_w, self.out_size,
self.actual_shape, self.align_corners,
self.align_mode)
self.inputs = {'X': input_np}
if self.out_size is not None:
self.inputs['OutSize'] = self.out_size
self.attrs = {
'out_w': self.out_w,
'scale': self.scale,
'interp_method': self.interp_method,
'align_corners': self.align_corners,
'align_mode': self.align_mode
}
self.outputs = {'Out': output_np}
def test_check_output(self):
if platform.system() == "Linux":
self.check_output_with_place(place=core.CPUPlace(), atol=1e-7)
else:
self.check_output_with_place(place=core.CPUPlace(), atol=1e-5)
def init_test_case(self):
self.interp_method = 'linear'
self.input_shape = [2, 3, 100]
self.out_w = 50
self.scale = 0.
self.out_size = np.array([50, ]).astype("int32")
self.align_corners = True
self.align_mode = 1
class TestLinearInterpOpException(unittest.TestCase):
def test_exception(self):
def input_shape_error():
x1 = fluid.data(name="x1", shape=[1], dtype="float32")
out = fluid.layers.resize_linear(
x1, out_shape=[256, ], data_format='NCW')
def data_format_error():
x2 = fluid.data(name="x2", shape=[1, 3, 128], dtype="float32")
out = fluid.layers.resize_linear(
x2, out_shape=[256, ], data_format='NHWCD')
def out_shape_error():
x3 = fluid.data(name="x3", shape=[1, 3, 128], dtype="float32")
out = fluid.layers.resize_linear(
x3, out_shape=[
256,
256,
], data_format='NHWC')
self.assertRaises(ValueError, input_shape_error)
self.assertRaises(ValueError, data_format_error)
self.assertRaises(ValueError, out_shape_error)
class TestLinearInterpOpError(unittest.TestCase):
def test_error(self):
with program_guard(Program(), Program()):
def input_shape_error():
x1 = fluid.data(name="x1", shape=[1], dtype="float32")
out1 = paddle.nn.Upsample(
size=[256, ], data_format='NCW', mode='linear')
out1_res = out1(x1)
def data_format_error():
x2 = fluid.data(name="x2", shape=[1, 3, 128], dtype="float32")
out2 = paddle.nn.Upsample(
size=[256, ], data_format='NHWCD', mode='linear')
out2_res = out2(x2)
def out_shape_error():
x3 = fluid.data(name="x3", shape=[1, 3, 128], dtype="float32")
out3 = paddle.nn.Upsample(
size=[
256,
256,
], data_format='NHWC', mode='linear')
out3_res = out3(x3)
self.assertRaises(ValueError, input_shape_error)
self.assertRaises(ValueError, data_format_error)
self.assertRaises(ValueError, out_shape_error)
if __name__ == "__main__":
unittest.main()