You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
414 lines
14 KiB
414 lines
14 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
import platform
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle
|
|
import paddle.fluid.core as core
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import Program, program_guard
|
|
from paddle.nn.functional import interpolate
|
|
|
|
|
|
def linear_interp_np(input,
|
|
out_w,
|
|
out_size=None,
|
|
actual_shape=None,
|
|
align_corners=True,
|
|
align_mode=0,
|
|
data_layout='NCHW'):
|
|
if data_layout == "NHWC":
|
|
input = np.transpose(input, (0, 2, 1)) # NHWC => NCHW
|
|
if out_size is not None:
|
|
out_w = out_size[0]
|
|
if actual_shape is not None:
|
|
out_w = actual_shape[0]
|
|
batch_size, channel, in_w = input.shape
|
|
|
|
ratio_w = 0.0
|
|
if out_w > 1:
|
|
if (align_corners):
|
|
ratio_w = (in_w - 1.0) / (out_w - 1.0)
|
|
else:
|
|
ratio_w = 1.0 * in_w / out_w
|
|
|
|
out = np.zeros((batch_size, channel, out_w))
|
|
|
|
for j in range(out_w):
|
|
if (align_mode == 0 and not align_corners):
|
|
w = int(ratio_w * (j + 0.5) - 0.5)
|
|
else:
|
|
w = int(ratio_w * j)
|
|
w = max(0, w)
|
|
wid = 1 if w < in_w - 1 else 0
|
|
|
|
if (align_mode == 0 and not align_corners):
|
|
idx_src_w = max(ratio_w * (j + 0.5) - 0.5, 0)
|
|
w1lambda = idx_src_w - w
|
|
else:
|
|
w1lambda = ratio_w * j - w
|
|
w2lambda = 1.0 - w1lambda
|
|
|
|
out[:, :, j] = w2lambda * input[:, :, w] + w1lambda * input[:, :, w +
|
|
wid]
|
|
|
|
if data_layout == "NHWC":
|
|
out = np.transpose(out, (0, 2, 1)) # NCHW => NHWC
|
|
|
|
return out.astype(input.dtype)
|
|
|
|
|
|
class TestLinearInterpOp(OpTest):
|
|
def setUp(self):
|
|
self.out_size = None
|
|
self.actual_shape = None
|
|
self.data_layout = 'NCHW'
|
|
self.init_test_case()
|
|
self.op_type = "linear_interp"
|
|
input_np = np.random.random(self.input_shape).astype("float64")
|
|
|
|
if self.data_layout == "NCHW":
|
|
in_w = self.input_shape[2]
|
|
else:
|
|
in_w = self.input_shape[1]
|
|
|
|
if self.scale > 0:
|
|
out_w = int(in_w * self.scale)
|
|
else:
|
|
out_w = self.out_w
|
|
|
|
output_np = linear_interp_np(input_np, out_w, self.out_size,
|
|
self.actual_shape, self.align_corners,
|
|
self.align_mode, self.data_layout)
|
|
self.inputs = {'X': input_np}
|
|
if self.out_size is not None:
|
|
self.inputs['OutSize'] = self.out_size
|
|
if self.actual_shape is not None:
|
|
self.inputs['OutSize'] = self.actual_shape
|
|
|
|
self.attrs = {
|
|
'out_w': self.out_w,
|
|
'scale': self.scale,
|
|
'interp_method': self.interp_method,
|
|
'align_corners': self.align_corners,
|
|
'align_mode': self.align_mode,
|
|
'data_layout': self.data_layout
|
|
}
|
|
self.outputs = {'Out': output_np}
|
|
|
|
def test_check_output(self):
|
|
if platform.system() == "Linux":
|
|
self.check_output(atol=1e-7)
|
|
else:
|
|
self.check_output(atol=1e-5)
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out', in_place=True)
|
|
|
|
def init_test_case(self):
|
|
self.interp_method = 'linear'
|
|
self.input_shape = [1, 3, 100]
|
|
self.out_w = 50
|
|
self.scale = 0.
|
|
self.out_size = np.array([50, ]).astype("int32")
|
|
self.align_corners = False
|
|
self.align_mode = 1
|
|
|
|
|
|
class TestLinearInterpOpDataLayout(TestLinearInterpOp):
|
|
def init_test_case(self):
|
|
self.interp_method = 'linear'
|
|
self.input_shape = [1, 3, 100]
|
|
self.out_w = 50
|
|
self.scale = 0.
|
|
self.out_size = np.array([50, ]).astype("int32")
|
|
self.align_corners = False
|
|
self.align_mode = 1
|
|
self.data_layout = 'NHWC'
|
|
|
|
|
|
class TestLinearInterpOpAlignMode(TestLinearInterpOp):
|
|
def init_test_case(self):
|
|
self.interp_method = 'linear'
|
|
self.input_shape = [1, 3, 100]
|
|
self.out_w = 50
|
|
self.scale = 0.
|
|
self.out_size = np.array([50, ]).astype("int32")
|
|
self.align_corners = False
|
|
self.align_mode = 0
|
|
|
|
|
|
class TestLinearInterpOpScale(TestLinearInterpOp):
|
|
def init_test_case(self):
|
|
self.interp_method = 'linear'
|
|
self.input_shape = [1, 3, 100]
|
|
self.out_w = 50
|
|
self.scale = 0.5
|
|
self.out_size = np.array([50, ]).astype("int32")
|
|
self.align_corners = False
|
|
self.align_mode = 0
|
|
|
|
|
|
class TestLinearInterpOpSizeTensor(TestLinearInterpOp):
|
|
def setUp(self):
|
|
self.out_size = None
|
|
self.actual_shape = None
|
|
self.data_layout = 'NCHW'
|
|
self.init_test_case()
|
|
self.op_type = "linear_interp"
|
|
input_np = np.random.random(self.input_shape).astype("float64")
|
|
self.shape_by_1Dtensor = False
|
|
self.scale_by_1Dtensor = False
|
|
|
|
if self.data_layout == "NCHW":
|
|
in_w = self.input_shape[2]
|
|
else:
|
|
in_w = self.input_shape[1]
|
|
|
|
if self.scale > 0:
|
|
out_w = int(in_w * self.scale)
|
|
else:
|
|
out_w = self.out_w
|
|
|
|
output_np = linear_interp_np(input_np, out_w, self.out_size,
|
|
self.actual_shape, self.align_corners,
|
|
self.align_mode, self.data_layout)
|
|
|
|
self.inputs = {'X': input_np}
|
|
if self.out_size is not None and self.shape_by_1Dtensor:
|
|
self.inputs['OutSize'] = self.out_size
|
|
elif self.actual_shape is not None and self.shape_by_1Dtensor:
|
|
self.inputs['OutSize'] = self.actual_shape
|
|
else:
|
|
size_tensor = []
|
|
for index, ele in enumerate(self.out_size):
|
|
size_tensor.append(("x" + str(index), np.ones(
|
|
(1)).astype('int32') * ele))
|
|
self.inputs['SizeTensor'] = size_tensor
|
|
|
|
self.attrs = {
|
|
'out_w': self.out_w,
|
|
'scale': self.scale,
|
|
'interp_method': self.interp_method,
|
|
'align_corners': self.align_corners,
|
|
'align_mode': self.align_mode,
|
|
'data_layout': self.data_layout
|
|
}
|
|
self.outputs = {'Out': output_np}
|
|
|
|
|
|
class TestResizeLinearAPI(unittest.TestCase):
|
|
def test_case(self):
|
|
x = fluid.data(name="x", shape=[1, 3, 64], dtype="float32")
|
|
|
|
dim = fluid.data(name="dim", shape=[1], dtype="int32")
|
|
shape_tensor = fluid.data(name="shape_tensor", shape=[1], dtype="int32")
|
|
actual_size = fluid.data(name="actual_size", shape=[1], dtype="int32")
|
|
scale_tensor = fluid.data(
|
|
name="scale_tensor", shape=[1], dtype="float32")
|
|
|
|
out1 = fluid.layers.resize_linear(
|
|
x, out_shape=[128, ], align_mode=1, align_corners=False)
|
|
out2 = fluid.layers.resize_linear(
|
|
x, out_shape=[128], align_mode=1, align_corners=False)
|
|
out3 = fluid.layers.resize_linear(
|
|
x, out_shape=shape_tensor, align_mode=1, align_corners=False)
|
|
out4 = fluid.layers.resize_linear(
|
|
x,
|
|
out_shape=[128, ],
|
|
actual_shape=actual_size,
|
|
align_mode=1,
|
|
align_corners=False)
|
|
out5 = fluid.layers.resize_linear(
|
|
x, scale=scale_tensor, align_mode=1, align_corners=False)
|
|
|
|
out6 = interpolate(
|
|
x,
|
|
scale_factor=scale_tensor,
|
|
mode='linear',
|
|
align_mode=1,
|
|
align_corners=False,
|
|
data_format='NCW')
|
|
out7 = interpolate(
|
|
x,
|
|
size=[128, ],
|
|
mode='linear',
|
|
align_mode=1,
|
|
align_corners=False,
|
|
data_format='NCW')
|
|
out8 = interpolate(
|
|
x,
|
|
size=shape_tensor,
|
|
mode='linear',
|
|
align_mode=1,
|
|
align_corners=False,
|
|
data_format='NCW')
|
|
|
|
x_data = np.random.random((1, 3, 64)).astype("float32")
|
|
dim_data = np.array([128]).astype("int32")
|
|
shape_data = np.array([128, ]).astype("int32")
|
|
actual_size_data = np.array([128, ]).astype("int32")
|
|
scale_data = np.array([2.0]).astype("float32")
|
|
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
else:
|
|
place = core.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
exe.run(fluid.default_startup_program())
|
|
results = exe.run(
|
|
fluid.default_main_program(),
|
|
feed={
|
|
"x": x_data,
|
|
"dim": dim_data,
|
|
"shape_tensor": shape_data,
|
|
"actual_size": actual_size_data,
|
|
"scale_tensor": scale_data
|
|
},
|
|
fetch_list=[out1, out2, out3, out4, out5, out6, out7, out8],
|
|
return_numpy=True)
|
|
|
|
expect_res = linear_interp_np(
|
|
x_data, out_w=128, align_mode=1, align_corners=False)
|
|
for res in results:
|
|
self.assertTrue(np.allclose(res, expect_res))
|
|
|
|
|
|
class TestLinearInterpOpAPI2_0(unittest.TestCase):
|
|
def test_case(self):
|
|
|
|
# dygraph
|
|
x_data = np.random.random((1, 3, 128)).astype("float32")
|
|
us_1 = paddle.nn.Upsample(
|
|
size=[64, ],
|
|
mode='linear',
|
|
align_mode=1,
|
|
align_corners=False,
|
|
data_format='NCW')
|
|
with fluid.dygraph.guard():
|
|
x = fluid.dygraph.to_variable(x_data)
|
|
interp = us_1(x)
|
|
|
|
expect = linear_interp_np(
|
|
x_data, out_w=64, align_mode=1, align_corners=False)
|
|
|
|
self.assertTrue(np.allclose(interp.numpy(), expect))
|
|
|
|
|
|
class TestResizeLinearOpUint8(OpTest):
|
|
def setUp(self):
|
|
self.out_size = None
|
|
self.actual_shape = None
|
|
self.init_test_case()
|
|
self.op_type = "linear_interp"
|
|
input_np = np.random.random(self.input_shape).astype("uint8")
|
|
|
|
if self.scale > 0:
|
|
out_w = int(self.input_shape[3] * self.scale)
|
|
else:
|
|
out_w = self.out_w
|
|
|
|
output_np = linear_interp_np(input_np, out_w, self.out_size,
|
|
self.actual_shape, self.align_corners,
|
|
self.align_mode)
|
|
self.inputs = {'X': input_np}
|
|
if self.out_size is not None:
|
|
self.inputs['OutSize'] = self.out_size
|
|
|
|
self.attrs = {
|
|
'out_w': self.out_w,
|
|
'scale': self.scale,
|
|
'interp_method': self.interp_method,
|
|
'align_corners': self.align_corners,
|
|
'align_mode': self.align_mode
|
|
}
|
|
self.outputs = {'Out': output_np}
|
|
|
|
def test_check_output(self):
|
|
if platform.system() == "Linux":
|
|
self.check_output_with_place(place=core.CPUPlace(), atol=1e-7)
|
|
else:
|
|
self.check_output_with_place(place=core.CPUPlace(), atol=1e-5)
|
|
|
|
def init_test_case(self):
|
|
self.interp_method = 'linear'
|
|
self.input_shape = [2, 3, 100]
|
|
self.out_w = 50
|
|
self.scale = 0.
|
|
self.out_size = np.array([50, ]).astype("int32")
|
|
self.align_corners = True
|
|
self.align_mode = 1
|
|
|
|
|
|
class TestLinearInterpOpException(unittest.TestCase):
|
|
def test_exception(self):
|
|
def input_shape_error():
|
|
x1 = fluid.data(name="x1", shape=[1], dtype="float32")
|
|
out = fluid.layers.resize_linear(
|
|
x1, out_shape=[256, ], data_format='NCW')
|
|
|
|
def data_format_error():
|
|
x2 = fluid.data(name="x2", shape=[1, 3, 128], dtype="float32")
|
|
out = fluid.layers.resize_linear(
|
|
x2, out_shape=[256, ], data_format='NHWCD')
|
|
|
|
def out_shape_error():
|
|
x3 = fluid.data(name="x3", shape=[1, 3, 128], dtype="float32")
|
|
out = fluid.layers.resize_linear(
|
|
x3, out_shape=[
|
|
256,
|
|
256,
|
|
], data_format='NHWC')
|
|
|
|
self.assertRaises(ValueError, input_shape_error)
|
|
self.assertRaises(ValueError, data_format_error)
|
|
self.assertRaises(ValueError, out_shape_error)
|
|
|
|
|
|
class TestLinearInterpOpError(unittest.TestCase):
|
|
def test_error(self):
|
|
with program_guard(Program(), Program()):
|
|
|
|
def input_shape_error():
|
|
x1 = fluid.data(name="x1", shape=[1], dtype="float32")
|
|
out1 = paddle.nn.Upsample(
|
|
size=[256, ], data_format='NCW', mode='linear')
|
|
out1_res = out1(x1)
|
|
|
|
def data_format_error():
|
|
x2 = fluid.data(name="x2", shape=[1, 3, 128], dtype="float32")
|
|
out2 = paddle.nn.Upsample(
|
|
size=[256, ], data_format='NHWCD', mode='linear')
|
|
out2_res = out2(x2)
|
|
|
|
def out_shape_error():
|
|
x3 = fluid.data(name="x3", shape=[1, 3, 128], dtype="float32")
|
|
out3 = paddle.nn.Upsample(
|
|
size=[
|
|
256,
|
|
256,
|
|
], data_format='NHWC', mode='linear')
|
|
out3_res = out3(x3)
|
|
|
|
self.assertRaises(ValueError, input_shape_error)
|
|
self.assertRaises(ValueError, data_format_error)
|
|
self.assertRaises(ValueError, out_shape_error)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|