You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_minimum_op.py

81 lines
3.3 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest, skip_check_grad_ci
import paddle
import paddle.fluid.core as core
class ApiMinimumTest(unittest.TestCase):
def setUp(self):
if core.is_compiled_with_cuda():
self.place = core.CUDAPlace(0)
else:
self.place = core.CPUPlace()
self.input_x = np.random.rand(10, 15).astype("float32")
self.input_y = np.random.rand(10, 15).astype("float32")
self.input_z = np.random.rand(15).astype("float32")
def test_static_api(self):
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program(),
paddle.static.Program()):
data_x = paddle.static.data("x", shape=[10, 15], dtype="float32")
data_y = paddle.static.data("y", shape=[10, 15], dtype="float32")
result_min = paddle.minimum(data_x, data_y)
exe = paddle.static.Executor(self.place)
res, = exe.run(feed={"x": self.input_x,
"y": self.input_y},
fetch_list=[result_min])
self.assertEqual((res == np.minimum(self.input_x, self.input_y)).all(),
True)
with paddle.static.program_guard(paddle.static.Program(),
paddle.static.Program()):
data_x = paddle.static.data("x", shape=[10, 15], dtype="float32")
data_z = paddle.static.data("z", shape=[15], dtype="float32")
result_min = paddle.minimum(data_x, data_z, axis=1)
exe = paddle.static.Executor(self.place)
res, = exe.run(feed={"x": self.input_x,
"z": self.input_z},
fetch_list=[result_min])
self.assertEqual((res == np.minimum(self.input_x, self.input_z)).all(),
True)
def test_dynamic_api(self):
paddle.disable_static()
np_x = np.array([10, 10]).astype('float64')
x = paddle.to_tensor(self.input_x)
y = paddle.to_tensor(self.input_y)
z = paddle.minimum(x, y)
np_z = z.numpy()
z_expected = np.array(np.minimum(self.input_x, self.input_y))
self.assertEqual((np_z == z_expected).all(), True)
def test_broadcast_axis(self):
paddle.disable_static()
np_x = np.random.rand(5, 4, 3, 2).astype("float64")
np_y = np.random.rand(4, 3).astype("float64")
x = paddle.to_tensor(self.input_x)
y = paddle.to_tensor(self.input_y)
result_1 = paddle.minimum(x, y, axis=1)
result_2 = paddle.minimum(x, y, axis=-2)
self.assertEqual((result_1.numpy() == result_2.numpy()).all(), True)