You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_var_base.py

540 lines
22 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import six
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
from paddle.fluid.framework import default_main_program, Program, convert_np_dtype_to_dtype_, in_dygraph_mode
class TestVarBase(unittest.TestCase):
def setUp(self):
self.shape = [512, 1234]
self.dtype = np.float32
self.array = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
def test_to_tensor(self):
def _test_place(place):
with fluid.dygraph.guard():
paddle.set_default_dtype('float32')
# set_default_dtype should not take effect on int
x = paddle.to_tensor(1, place=place, stop_gradient=False)
self.assertTrue(np.array_equal(x.numpy(), [1]))
self.assertNotEqual(x.dtype, core.VarDesc.VarType.FP32)
# set_default_dtype should not take effect on numpy
x = paddle.to_tensor(
np.array([1.2]).astype('float16'),
place=place,
stop_gradient=False)
self.assertTrue(
np.array_equal(x.numpy(), np.array([1.2], 'float16')))
self.assertEqual(x.dtype, core.VarDesc.VarType.FP16)
# set_default_dtype take effect on float
x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
self.assertTrue(
np.array_equal(x.numpy(), np.array([1.2]).astype(
'float32')))
self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
clone_x = x.clone()
self.assertTrue(
np.array_equal(clone_x.numpy(),
np.array([1.2]).astype('float32')))
self.assertEqual(clone_x.dtype, core.VarDesc.VarType.FP32)
y = clone_x**2
y.backward()
self.assertTrue(
np.array_equal(x.grad, np.array([2.4]).astype('float32')))
y = x.cpu()
self.assertEqual(y.place.__repr__(), "CPUPlace")
if core.is_compiled_with_cuda():
y = x.pin_memory()
self.assertEqual(y.place.__repr__(), "CUDAPinnedPlace")
y = x.cuda(blocking=False)
self.assertEqual(y.place.__repr__(), "CUDAPlace(0)")
y = x.cuda(blocking=True)
self.assertEqual(y.place.__repr__(), "CUDAPlace(0)")
# set_default_dtype take effect on complex
x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
self.assertTrue(np.array_equal(x.numpy(), [1 + 2j]))
self.assertEqual(x.dtype, 'complex64')
paddle.set_default_dtype('float64')
x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
self.assertTrue(np.array_equal(x.numpy(), [1.2]))
self.assertEqual(x.dtype, core.VarDesc.VarType.FP64)
x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
self.assertTrue(np.array_equal(x.numpy(), [1 + 2j]))
self.assertEqual(x.dtype, 'complex128')
x = paddle.to_tensor(
1, dtype='float32', place=place, stop_gradient=False)
self.assertTrue(np.array_equal(x.numpy(), [1.]))
self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
self.assertEqual(x.shape, [1])
self.assertEqual(x.stop_gradient, False)
self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)
x = paddle.to_tensor(
(1, 2), dtype='float32', place=place, stop_gradient=False)
x = paddle.to_tensor(
[1, 2], dtype='float32', place=place, stop_gradient=False)
self.assertTrue(np.array_equal(x.numpy(), [1., 2.]))
self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
self.assertEqual(x.grad, None)
self.assertEqual(x.shape, [2])
self.assertEqual(x.stop_gradient, False)
self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)
x = paddle.to_tensor(
self.array,
dtype='float32',
place=place,
stop_gradient=False)
self.assertTrue(np.array_equal(x.numpy(), self.array))
self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
self.assertEqual(x.shape, self.shape)
self.assertEqual(x.stop_gradient, False)
self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)
y = paddle.to_tensor(x)
y = paddle.to_tensor(y, dtype='float64', place=place)
self.assertTrue(np.array_equal(y.numpy(), self.array))
self.assertEqual(y.dtype, core.VarDesc.VarType.FP64)
self.assertEqual(y.shape, self.shape)
self.assertEqual(y.stop_gradient, True)
self.assertEqual(y.type, core.VarDesc.VarType.LOD_TENSOR)
z = x + y
self.assertTrue(np.array_equal(z.numpy(), 2 * self.array))
x = paddle.to_tensor(
[1 + 2j, 1 - 2j], dtype='complex64', place=place)
y = paddle.to_tensor(x)
self.assertTrue(np.array_equal(x.numpy(), [1 + 2j, 1 - 2j]))
self.assertEqual(y.dtype, 'complex64')
self.assertEqual(y.shape, [2])
self.assertEqual(y.real.stop_gradient, True)
self.assertEqual(y.real.type, core.VarDesc.VarType.LOD_TENSOR)
with self.assertRaises(TypeError):
paddle.to_tensor('test')
with self.assertRaises(TypeError):
paddle.to_tensor(1, dtype='test')
with self.assertRaises(ValueError):
paddle.to_tensor([[1], [2, 3]])
with self.assertRaises(ValueError):
paddle.to_tensor([[1], [2, 3]], place='test')
with self.assertRaises(ValueError):
paddle.to_tensor([[1], [2, 3]], place=1)
_test_place(core.CPUPlace())
if core.is_compiled_with_cuda():
_test_place(core.CUDAPinnedPlace())
_test_place(core.CUDAPlace(0))
def test_to_variable(self):
with fluid.dygraph.guard():
var = fluid.dygraph.to_variable(self.array, name="abc")
self.assertTrue(np.array_equal(var.numpy(), self.array))
self.assertEqual(var.name, 'abc')
# default value
self.assertEqual(var.persistable, False)
self.assertEqual(var.stop_gradient, True)
self.assertEqual(var.shape, self.shape)
self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)
# The type of input must be 'ndarray' or 'Variable', it will raise TypeError
with self.assertRaises(TypeError):
var = fluid.dygraph.to_variable("test", name="abc")
# test to_variable of LayerObjectHelper(LayerHelperBase)
with self.assertRaises(TypeError):
linear = fluid.dygraph.Linear(32, 64)
var = linear._helper.to_variable("test", name="abc")
def test_list_to_variable(self):
with fluid.dygraph.guard():
array = [[[1, 2], [1, 2], [1.0, 2]], [[1, 2], [1, 2], [1, 2]]]
var = fluid.dygraph.to_variable(array, dtype='int32')
self.assertTrue(np.array_equal(var.numpy(), array))
self.assertEqual(var.shape, [2, 3, 2])
self.assertEqual(var.dtype, core.VarDesc.VarType.INT32)
self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)
def test_tuple_to_variable(self):
with fluid.dygraph.guard():
array = (((1, 2), (1, 2), (1, 2)), ((1, 2), (1, 2), (1, 2)))
var = fluid.dygraph.to_variable(array, dtype='float32')
self.assertTrue(np.array_equal(var.numpy(), array))
self.assertEqual(var.shape, [2, 3, 2])
self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)
def test_tensor_to_variable(self):
with fluid.dygraph.guard():
t = fluid.Tensor()
t.set(np.random.random((1024, 1024)), fluid.CPUPlace())
var = fluid.dygraph.to_variable(t)
self.assertTrue(np.array_equal(t, var.numpy()))
def test_write_property(self):
with fluid.dygraph.guard():
var = fluid.dygraph.to_variable(self.array)
self.assertEqual(var.name, 'generated_tensor_0')
var.name = 'test'
self.assertEqual(var.name, 'test')
self.assertEqual(var.persistable, False)
var.persistable = True
self.assertEqual(var.persistable, True)
self.assertEqual(var.stop_gradient, True)
var.stop_gradient = False
self.assertEqual(var.stop_gradient, False)
# test some patched methods
def test_set_value(self):
with fluid.dygraph.guard():
var = fluid.dygraph.to_variable(self.array)
tmp1 = np.random.uniform(0.1, 1, [2, 2, 3]).astype(self.dtype)
self.assertRaises(AssertionError, var.set_value, tmp1)
tmp2 = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
var.set_value(tmp2)
self.assertTrue(np.array_equal(var.numpy(), tmp2))
def test_to_string(self):
with fluid.dygraph.guard():
var = fluid.dygraph.to_variable(self.array)
self.assertTrue(isinstance(str(var), str))
def test_backward(self):
with fluid.dygraph.guard():
var = fluid.dygraph.to_variable(self.array)
var.stop_gradient = False
loss = fluid.layers.relu(var)
loss.backward()
grad_var = var._grad_ivar()
self.assertEqual(grad_var.shape, self.shape)
def test_gradient(self):
with fluid.dygraph.guard():
var = fluid.dygraph.to_variable(self.array)
var.stop_gradient = False
loss = fluid.layers.relu(var)
loss.backward()
grad_var = var.gradient()
self.assertEqual(grad_var.shape, self.array.shape)
def test_block(self):
with fluid.dygraph.guard():
var = fluid.dygraph.to_variable(self.array)
self.assertEqual(var.block,
fluid.default_main_program().global_block())
def _test_slice(self):
w = fluid.dygraph.to_variable(
np.random.random((784, 100, 100)).astype('float64'))
for i in range(3):
nw = w[i]
self.assertEqual((100, 100), tuple(nw.shape))
nw = w[:]
self.assertEqual((784, 100, 100), tuple(nw.shape))
nw = w[:, :]
self.assertEqual((784, 100, 100), tuple(nw.shape))
nw = w[:, :, -1]
self.assertEqual((784, 100), tuple(nw.shape))
nw = w[1, 1, 1]
self.assertEqual(len(nw.shape), 1)
self.assertEqual(nw.shape[0], 1)
nw = w[:, :, :-1]
self.assertEqual((784, 100, 99), tuple(nw.shape))
tensor_array = np.array(
[[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
[[10, 11, 12], [13, 14, 15], [16, 17, 18]],
[[19, 20, 21], [22, 23, 24], [25, 26, 27]]]).astype('float32')
var = fluid.dygraph.to_variable(tensor_array)
var1 = var[0, 1, 1]
var2 = var[1:]
var3 = var[0:1]
var4 = var[::-1]
var5 = var[1, 1:, 1:]
var_reshape = fluid.layers.reshape(var, [3, -1, 3])
var6 = var_reshape[:, :, -1]
var7 = var[:, :, :-1]
var8 = var[:1, :1, :1]
var9 = var[:-1, :-1, :-1]
var10 = var[::-1, :1, :-1]
var11 = var[:-1, ::-1, -1:]
var12 = var[1:2, 2:, ::-1]
var13 = var[2:10, 2:, -2:-1]
var14 = var[1:-1, 0:2, ::-1]
var15 = var[::-1, ::-1, ::-1]
vars = [
var, var1, var2, var3, var4, var5, var6, var7, var8, var9, var10,
var11, var12, var13, var14, var15
]
local_out = [var.numpy() for var in vars]
self.assertTrue(np.array_equal(local_out[1], tensor_array[0, 1, 1:2]))
self.assertTrue(np.array_equal(local_out[2], tensor_array[1:]))
self.assertTrue(np.array_equal(local_out[3], tensor_array[0:1]))
self.assertTrue(np.array_equal(local_out[4], tensor_array[::-1]))
self.assertTrue(np.array_equal(local_out[5], tensor_array[1, 1:, 1:]))
self.assertTrue(
np.array_equal(local_out[6],
tensor_array.reshape((3, -1, 3))[:, :, -1]))
self.assertTrue(np.array_equal(local_out[7], tensor_array[:, :, :-1]))
self.assertTrue(np.array_equal(local_out[8], tensor_array[:1, :1, :1]))
self.assertTrue(
np.array_equal(local_out[9], tensor_array[:-1, :-1, :-1]))
self.assertTrue(
np.array_equal(local_out[10], tensor_array[::-1, :1, :-1]))
self.assertTrue(
np.array_equal(local_out[11], tensor_array[:-1, ::-1, -1:]))
self.assertTrue(
np.array_equal(local_out[12], tensor_array[1:2, 2:, ::-1]))
self.assertTrue(
np.array_equal(local_out[13], tensor_array[2:10, 2:, -2:-1]))
self.assertTrue(
np.array_equal(local_out[14], tensor_array[1:-1, 0:2, ::-1]))
self.assertTrue(
np.array_equal(local_out[15], tensor_array[::-1, ::-1, ::-1]))
def _test_for_var(self):
np_value = np.random.random((30, 100, 100)).astype('float32')
w = fluid.dygraph.to_variable(np_value)
for i, e in enumerate(w):
self.assertTrue(np.array_equal(e.numpy(), np_value[i]))
def test_slice(self):
with fluid.dygraph.guard():
self._test_slice()
self._test_for_var()
var = fluid.dygraph.to_variable(self.array)
self.assertTrue(np.array_equal(var[1, :].numpy(), self.array[1, :]))
self.assertTrue(np.array_equal(var[::-1].numpy(), self.array[::-1]))
with self.assertRaises(IndexError):
y = var[self.shape[0]]
def test_var_base_to_np(self):
with fluid.dygraph.guard():
var = fluid.dygraph.to_variable(self.array)
self.assertTrue(
np.array_equal(var.numpy(),
fluid.framework._var_base_to_np(var)))
def test_if(self):
with fluid.dygraph.guard():
var1 = fluid.dygraph.to_variable(np.array([[[0]]]))
var2 = fluid.dygraph.to_variable(np.array([[[1]]]))
var1_bool = False
var2_bool = False
if var1:
var1_bool = True
if var2:
var2_bool = True
assert var1_bool == False, "if var1 should be false"
assert var2_bool == True, "if var2 should be true"
assert bool(var1) == False, "bool(var1) is False"
assert bool(var2) == True, "bool(var2) is True"
def test_to_static_var(self):
with fluid.dygraph.guard():
# Convert VarBase into Variable or Parameter
var_base = fluid.dygraph.to_variable(self.array, name="var_base_1")
static_var = var_base._to_static_var()
self._assert_to_static(var_base, static_var)
var_base = fluid.dygraph.to_variable(self.array, name="var_base_2")
static_param = var_base._to_static_var(to_parameter=True)
self._assert_to_static(var_base, static_param, True)
# Convert ParamBase into Parameter
fc = fluid.dygraph.Linear(
10,
20,
param_attr=fluid.ParamAttr(
learning_rate=0.001,
do_model_average=True,
regularizer=fluid.regularizer.L1Decay()))
weight = fc.parameters()[0]
static_param = weight._to_static_var()
self._assert_to_static(weight, static_param, True)
def _assert_to_static(self, var_base, static_var, is_param=False):
if is_param:
self.assertTrue(isinstance(static_var, fluid.framework.Parameter))
self.assertTrue(static_var.persistable, True)
if isinstance(var_base, fluid.framework.ParamBase):
for attr in ['trainable', 'is_distributed', 'do_model_average']:
self.assertEqual(
getattr(var_base, attr), getattr(static_var, attr))
self.assertEqual(static_var.optimize_attr['learning_rate'],
0.001)
self.assertTrue(
isinstance(static_var.regularizer,
fluid.regularizer.L1Decay))
else:
self.assertTrue(isinstance(static_var, fluid.framework.Variable))
attr_keys = ['block', 'dtype', 'type', 'name']
for attr in attr_keys:
self.assertEqual(getattr(var_base, attr), getattr(static_var, attr))
self.assertListEqual(list(var_base.shape), list(static_var.shape))
def test_tensor_str(self):
paddle.enable_static()
paddle.disable_static(paddle.CPUPlace())
paddle.seed(10)
a = paddle.rand([10, 20])
paddle.set_printoptions(4, 100, 3)
a_str = str(a)
if six.PY2:
expected = '''Tensor(shape=[10L, 20L], dtype=float32, place=CPUPlace, stop_gradient=True,
[[0.2727, 0.5489, 0.8655, ..., 0.2916, 0.8525, 0.9000],
[0.3806, 0.8996, 0.0928, ..., 0.9535, 0.8378, 0.6409],
[0.1484, 0.4038, 0.8294, ..., 0.0148, 0.6520, 0.4250],
...,
[0.3426, 0.1909, 0.7240, ..., 0.4218, 0.2676, 0.5679],
[0.5561, 0.2081, 0.0676, ..., 0.9778, 0.3302, 0.9559],
[0.2665, 0.8483, 0.5389, ..., 0.4956, 0.6862, 0.9178]])'''
else:
expected = '''Tensor(shape=[10, 20], dtype=float32, place=CPUPlace, stop_gradient=True,
[[0.2727, 0.5489, 0.8655, ..., 0.2916, 0.8525, 0.9000],
[0.3806, 0.8996, 0.0928, ..., 0.9535, 0.8378, 0.6409],
[0.1484, 0.4038, 0.8294, ..., 0.0148, 0.6520, 0.4250],
...,
[0.3426, 0.1909, 0.7240, ..., 0.4218, 0.2676, 0.5679],
[0.5561, 0.2081, 0.0676, ..., 0.9778, 0.3302, 0.9559],
[0.2665, 0.8483, 0.5389, ..., 0.4956, 0.6862, 0.9178]])'''
self.assertEqual(a_str, expected)
paddle.enable_static()
def test_tensor_str2(self):
paddle.disable_static(paddle.CPUPlace())
a = paddle.to_tensor([[1.5111111, 1.0], [0, 0]])
a_str = str(a)
if six.PY2:
expected = '''Tensor(shape=[2L, 2L], dtype=float32, place=CPUPlace, stop_gradient=True,
[[1.5111, 1. ],
[0. , 0. ]])'''
else:
expected = '''Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=True,
[[1.5111, 1. ],
[0. , 0. ]])'''
self.assertEqual(a_str, expected)
paddle.enable_static()
def test_tensor_str3(self):
paddle.disable_static(paddle.CPUPlace())
a = paddle.to_tensor([[-1.5111111, 1.0], [0, -0.5]])
a_str = str(a)
if six.PY2:
expected = '''Tensor(shape=[2L, 2L], dtype=float32, place=CPUPlace, stop_gradient=True,
[[-1.5111, 1. ],
[ 0. , -0.5000]])'''
else:
expected = '''Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=True,
[[-1.5111, 1. ],
[ 0. , -0.5000]])'''
self.assertEqual(a_str, expected)
paddle.enable_static()
class TestVarBaseSetitem(unittest.TestCase):
def setUp(self):
paddle.disable_static()
self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(np.float32))
self.np_value = np.random.random((2, 3)).astype(np.float32)
self.tensor_value = paddle.to_tensor(self.np_value)
def _test(self, value):
paddle.disable_static()
id_origin = id(self.tensor_x)
self.tensor_x[0] = value
if isinstance(value, (six.integer_types, float)):
result = np.zeros((2, 3)).astype(np.float32) + value
else:
result = self.np_value
self.assertTrue(np.array_equal(self.tensor_x[0].numpy(), result))
self.assertEqual(id_origin, id(self.tensor_x))
self.tensor_x[1:2] = value
self.assertTrue(np.array_equal(self.tensor_x[1].numpy(), result))
self.assertEqual(id_origin, id(self.tensor_x))
self.tensor_x[...] = value
self.assertTrue(np.array_equal(self.tensor_x[3].numpy(), result))
self.assertEqual(id_origin, id(self.tensor_x))
def test_value_tensor(self):
paddle.disable_static()
self._test(self.tensor_value)
def test_value_numpy(self):
paddle.disable_static()
self._test(self.np_value)
def test_value_int(self):
paddle.disable_static()
self._test(10)
def test_value_float(self):
paddle.disable_static()
self._test(3.3)
if __name__ == '__main__':
unittest.main()