You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
244 lines
8.8 KiB
244 lines
8.8 KiB
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "MKLDNNFcLayer.h"
|
|
#include "paddle/utils/Logging.h"
|
|
|
|
using namespace mkldnn; // NOLINT
|
|
typedef memory::format format;
|
|
typedef inner_product_forward fc_fwd;
|
|
typedef inner_product_backward_weights fc_bwdWgt;
|
|
typedef inner_product_backward_data fc_bwdData;
|
|
|
|
namespace paddle {
|
|
|
|
REGISTER_LAYER(mkldnn_fc, MKLDNNFcLayer);
|
|
|
|
bool MKLDNNFcLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
if (!MKLDNNLayer::init(layerMap, parameterMap)) {
|
|
return false;
|
|
}
|
|
|
|
CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet";
|
|
CHECK_EQ(inputLayers_.size(), parameters_.size());
|
|
CHECK(!parameters_[0]->isSparse()) << "Do not support sparse yet";
|
|
|
|
// output size, cat not be changed
|
|
oc_ = getSize();
|
|
oh_ = 1;
|
|
ow_ = 1;
|
|
ih_ = 1;
|
|
iw_ = 1;
|
|
|
|
// input size can not change in FC
|
|
iLayerSize_ = inputLayers_[0]->getSize();
|
|
CHECK_EQ(parameters_[0]->getSize(), iLayerSize_ * oc_);
|
|
|
|
// create weight
|
|
weight_ =
|
|
std::unique_ptr<Weight>(new Weight(oc_, iLayerSize_, parameters_[0], 0));
|
|
|
|
// create biases
|
|
if (biasParameter_.get() != NULL) {
|
|
biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void MKLDNNFcLayer::convertWeightsFromPaddle() {
|
|
if (hasInitedWgt_) {
|
|
return;
|
|
}
|
|
|
|
CHECK(wgtVal_) << "should have been initialized";
|
|
bool hasNoSpatial_ = ih_ == 1 && iw_ == 1;
|
|
auto targetDim = wgtVal_->getDims();
|
|
auto srcFmt = hasNoSpatial_ ? memory::format::io : memory::format::ihwo;
|
|
wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim);
|
|
hasInitedWgt_ = true;
|
|
}
|
|
|
|
void MKLDNNFcLayer::convertWeightsToPaddle() {
|
|
CHECK(wgtVal_) << "should have been initialized";
|
|
bool hasNoSpatial_ = ih_ == 1 && iw_ == 1;
|
|
auto targetDim = wgtVal_->getDims();
|
|
auto dstFmt = hasNoSpatial_ ? memory::format::io : memory::format::ihwo;
|
|
wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
|
|
}
|
|
|
|
void MKLDNNFcLayer::reshape(
|
|
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
|
|
reshapeInput(bs, ih, iw);
|
|
|
|
CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize());
|
|
ic = iLayerSize_ / (ih * iw);
|
|
CHECK_EQ(size_t(ic * ih * iw), iLayerSize_) << "not divisible";
|
|
CHECK_EQ(size_t(oc), getSize());
|
|
|
|
reshapeOutput(oh, ow);
|
|
resizeOutput(bs, oc);
|
|
|
|
printSizeInfo();
|
|
}
|
|
|
|
void MKLDNNFcLayer::resetFwd(std::vector<mkldnn::primitive>& pipeline,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& wgt,
|
|
MKLDNNMatrixPtr& bias,
|
|
MKLDNNMatrixPtr& out) {
|
|
pipeline.clear();
|
|
bool hasBias = biases_ && biases_->getW();
|
|
const MatrixPtr& wgtVal = weight_->getW();
|
|
const MatrixPtr& biasVal = hasBias ? biases_->getW() : nullptr;
|
|
const MatrixPtr& outVal = output_.value;
|
|
|
|
if (inputIsOnlyMKLDNN()) {
|
|
const MatrixPtr& inVal = getInputValue(0);
|
|
in = std::dynamic_pointer_cast<MKLDNNMatrix>(inVal);
|
|
CHECK(in) << "Input should be MKLDNNMatrix";
|
|
} else {
|
|
CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet";
|
|
const MatrixPtr& inVal = getInputValue(0, CPU_DEVICE);
|
|
in = MKLDNNMatrix::create(
|
|
inVal, memory::dims{bs_, ic_, ih_, iw_}, format::nchw, engine_);
|
|
}
|
|
in->downSpatial();
|
|
wgt = MKLDNNMatrix::create(
|
|
wgtVal, memory::dims{oc_, ic_, ih_, iw_}, format::oihw, engine_);
|
|
wgt->downSpatial();
|
|
bias = hasBias ? MKLDNNMatrix::create(biasVal, {oc_}, format::x, engine_)
|
|
: nullptr;
|
|
out = MKLDNNMatrix::create(outVal, {bs_, oc_}, format::nc, engine_);
|
|
|
|
// change original output value to mkldnn output value
|
|
output_.value = std::dynamic_pointer_cast<Matrix>(out);
|
|
if (!outputIsOnlyMKLDNN()) {
|
|
// fc cpu output value do not need create convert
|
|
// just share point
|
|
getOutput(CPU_DEVICE).value->setData(output_.value->getData());
|
|
}
|
|
|
|
// create forward handle
|
|
prop_kind pk = prop_kind::forward;
|
|
fc_fwd::desc fwdDesc = hasBias ? fc_fwd::desc(pk,
|
|
in->getMemoryDesc(),
|
|
wgt->getMemoryDesc(),
|
|
bias->getMemoryDesc(),
|
|
out->getMemoryDesc())
|
|
: fc_fwd::desc(pk,
|
|
in->getMemoryDesc(),
|
|
wgt->getMemoryDesc(),
|
|
out->getMemoryDesc());
|
|
fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
|
|
if (hasBias) {
|
|
fwd_.reset(new fc_fwd(fwdPD, *in, *wgt, *bias, *out));
|
|
} else {
|
|
fwd_.reset(new fc_fwd(fwdPD, *in, *wgt, *out));
|
|
}
|
|
printValueFormatFlow();
|
|
|
|
pipeline.push_back(*fwd_);
|
|
}
|
|
|
|
void MKLDNNFcLayer::resetBwd(std::vector<mkldnn::primitive>& pipeline,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& wgt,
|
|
MKLDNNMatrixPtr& bias,
|
|
MKLDNNMatrixPtr& out) {
|
|
pipeline.clear();
|
|
if (!needResetBwd_) {
|
|
return;
|
|
}
|
|
needResetBwd_ = false;
|
|
bool hasBias = biases_ && biases_->getWGrad();
|
|
|
|
/// backward weight
|
|
CHECK(inVal_) << "Should have input value";
|
|
const MatrixPtr& wgtGrad = weight_->getWGrad();
|
|
const MatrixPtr& biasGrad = hasBias ? biases_->getWGrad() : nullptr;
|
|
|
|
// TODO(TJ): merge outgrad
|
|
int device = outputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE;
|
|
// for MKLDNN device:
|
|
// can not directly cast outputgrad to mkldnnmatrix,
|
|
// since each layer can not write the inputgrad to mkldnn inputgrad.
|
|
// So just create from matrix with outputvalue format.
|
|
// for CPU device:
|
|
// fc do not need to convert from cpu device since output is always nc format
|
|
// only need create from cpu device
|
|
const MatrixPtr& outGrad = getOutput(device).grad;
|
|
out = MKLDNNMatrix::create(outGrad, outVal_->getPrimitiveDesc());
|
|
wgt = MKLDNNMatrix::create(wgtGrad, wgtVal_->getPrimitiveDesc());
|
|
bias = hasBias ? MKLDNNMatrix::create(biasGrad, biasVal_->getPrimitiveDesc())
|
|
: nullptr;
|
|
|
|
// create memory primitive desc
|
|
fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward,
|
|
inVal_->getMemoryDesc(),
|
|
wgt->getMemoryDesc(),
|
|
out->getMemoryDesc());
|
|
fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
|
|
fc_bwdWgt::desc bwdWgtDesc = hasBias
|
|
? fc_bwdWgt::desc(inVal_->getMemoryDesc(),
|
|
wgt->getMemoryDesc(),
|
|
bias->getMemoryDesc(),
|
|
out->getMemoryDesc())
|
|
: fc_bwdWgt::desc(inVal_->getMemoryDesc(),
|
|
wgt->getMemoryDesc(),
|
|
out->getMemoryDesc());
|
|
fc_bwdWgt::primitive_desc bwdWgtPD =
|
|
fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, fwdPD);
|
|
|
|
if (hasBias) {
|
|
bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt, *bias));
|
|
} else {
|
|
bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt));
|
|
}
|
|
pipeline.push_back(*bwdWgt_);
|
|
|
|
/// backward data
|
|
const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad;
|
|
if (inGrad == nullptr) {
|
|
return;
|
|
}
|
|
if (getInput(0, MKLDNN_DEVICE).getAllCount() > 1) {
|
|
// TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
|
|
} else {
|
|
in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc());
|
|
}
|
|
|
|
fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(
|
|
inVal_->getMemoryDesc(), wgt->getMemoryDesc(), out->getMemoryDesc());
|
|
fc_bwdData::primitive_desc bwdDataPD =
|
|
fc_bwdData::primitive_desc(bwdDataDesc, engine_, fwdPD);
|
|
|
|
CHECK(wgtVal_) << "Should have weight memory";
|
|
bwdData_.reset(new fc_bwdData(bwdDataPD, *out, *wgtVal_, *in));
|
|
printGradFormatFlow();
|
|
pipeline.push_back(*bwdData_);
|
|
}
|
|
|
|
void MKLDNNFcLayer::updateInputData() {
|
|
inVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
|
|
}
|
|
|
|
void MKLDNNFcLayer::updateWeights(const UpdateCallback& callback) {
|
|
weight_->getParameterPtr()->incUpdate(callback);
|
|
if (biases_ && biases_->getWGrad()) {
|
|
biases_->getParameterPtr()->incUpdate(callback);
|
|
}
|
|
}
|
|
} // namespace paddle
|