You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
266 lines
9.2 KiB
266 lines
9.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/platform/cuda_helper.h"
|
|
#include "paddle/operators/roi_pool_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
#define FLT_MAX __FLT_MAX__
|
|
|
|
constexpr int PADDLE_OPERATORS_ROIPOOL_CUDA_NUM_THREADS = 512;
|
|
constexpr int PADDLE_OPERATORS_ROIPOOL_MAXIMUM_NUM_BLOCKS = 4096;
|
|
|
|
inline int PADDLE_OPERATORS_ROIPOOL_GET_BLOCKS(const int N) {
|
|
return std::min((N + PADDLE_OPERATORS_ROIPOOL_CUDA_NUM_THREADS - 1)
|
|
/ PADDLE_OPERATORS_ROIPOOL_CUDA_NUM_THREADS,
|
|
PADDLE_OPERATORS_ROIPOOL_MAXIMUM_NUM_BLOCKS);
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void GPURoiPoolForward(
|
|
const int nthreads,
|
|
const T* input_data,
|
|
const int64_t* input_rois,
|
|
const float spatial_scale,
|
|
const int channels,
|
|
const int height,
|
|
const int width,
|
|
const int pooled_height,
|
|
const int pooled_width,
|
|
T* output_data,
|
|
int64_t* argmax_data) {
|
|
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int offset = blockDim.x * gridDim.x;
|
|
for (size_t i = index; i < nthreads; i += offset) {
|
|
int pw = index % pooled_width;
|
|
int ph = (index / pooled_width) % pooled_height;
|
|
int c = (index / pooled_width / pooled_height) % channels;
|
|
int n = index / pooled_width / pooled_height / channels;
|
|
|
|
const int64_t* offset_input_rois = input_rois + n * 5;
|
|
int roi_batch_ind = offset_input_rois[0];
|
|
int roi_start_w = round(offset_input_rois[1] * spatial_scale);
|
|
int roi_start_h = round(offset_input_rois[2] * spatial_scale);
|
|
int roi_end_w = round(offset_input_rois[3] * spatial_scale);
|
|
int roi_end_h = round(offset_input_rois[4] * spatial_scale);
|
|
|
|
int roi_width = max(roi_end_w - roi_start_w + 1, 1);
|
|
int roi_height = max(roi_end_h - roi_start_h + 1, 1);
|
|
T bin_size_h = static_cast<T>(roi_height)
|
|
/ static_cast<T>(pooled_height);
|
|
T bin_size_w = static_cast<T>(roi_width)
|
|
/ static_cast<T>(pooled_width);
|
|
|
|
int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
|
|
int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
|
|
int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
|
|
int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));
|
|
|
|
hstart = min(max(hstart + roi_start_h, 0), height);
|
|
hend = min(max(hend + roi_start_h, 0), height);
|
|
wstart = min(max(wstart + roi_start_w, 0), width);
|
|
wend = min(max(wend + roi_start_w, 0), width);
|
|
bool is_empty = (hend <= hstart) || (wend <= wstart);
|
|
|
|
T maxval = is_empty ? 0 : -FLT_MAX;
|
|
int maxidx = -1;
|
|
const T* offset_input_data =
|
|
input_data + (roi_batch_ind * channels + c) * height * width;
|
|
for (int h = hstart; h < hend; ++h) {
|
|
for (int w = wstart; w < wend; ++w) {
|
|
int input_data_index = h * width + w;
|
|
if (offset_input_data[input_data_index] > maxval) {
|
|
maxval = offset_input_data[input_data_index];
|
|
maxidx = input_data_index;
|
|
}
|
|
}
|
|
}
|
|
output_data[index] = maxval;
|
|
if (argmax_data) {
|
|
argmax_data[index] = maxidx;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void GPURoiPoolBackward(
|
|
const int nthreads,
|
|
const int64_t* input_rois,
|
|
const T* output_grad,
|
|
const int64_t* argmax_data,
|
|
const int num_rois,
|
|
const float spatial_scale,
|
|
const int channels,
|
|
const int height,
|
|
const int width,
|
|
const int pooled_height,
|
|
const int pooled_width,
|
|
T* input_grad) {
|
|
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int offset = blockDim.x * gridDim.x;
|
|
for (int i = index; i < nthreads; i += offset) {
|
|
int pw = index % pooled_width;
|
|
int ph = (index / pooled_width) % pooled_height;
|
|
int c = (index / pooled_width / pooled_height) % channels;
|
|
int n = index / pooled_width / pooled_height / channels;
|
|
|
|
const int64_t* offset_input_rois = input_rois + n * 5;
|
|
int roi_batch_ind = offset_input_rois[0];
|
|
int input_offset = (roi_batch_ind * channels + c) * height * width;
|
|
int output_offset = (n * channels + c) * pooled_height * pooled_width;
|
|
const T* offset_output_grad = output_grad + output_offset;
|
|
T* offset_input_grad = input_grad + input_offset;
|
|
const int64_t* offset_argmax_data = argmax_data + output_offset;
|
|
|
|
int argmax = offset_argmax_data[ph * pooled_width + pw];
|
|
if (argmax != -1) {
|
|
platform::CudaAtomicAdd(offset_input_grad + argmax,
|
|
static_cast<T>(offset_output_grad[ph * pooled_width + pw]));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template <typename Place, typename T>
|
|
class GPURoiPoolOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* in = ctx.Input<Tensor>("X");
|
|
auto* rois = ctx.Input<Tensor>("Rois");
|
|
auto* out = ctx.Output<Tensor>("Out");
|
|
auto* argmax = ctx.Output<Tensor>("Argmax");
|
|
|
|
auto pooled_height = ctx.Attr<int>("pooled_height");
|
|
auto pooled_width = ctx.Attr<int>("pooled_width");
|
|
auto spatial_scale = ctx.Attr<float>("spatial_scale");
|
|
|
|
PADDLE_ENFORCE_GT(pooled_height, 0,
|
|
"The pooled output height must greater than 0");
|
|
PADDLE_ENFORCE_GT(pooled_width, 0,
|
|
"The pooled output width must greater than 0");
|
|
PADDLE_ENFORCE_GT(spatial_scale, 0,
|
|
"The spatial scale must greater than 0");
|
|
|
|
auto in_dims = in->dims();
|
|
auto in_stride = framework::stride(in_dims);
|
|
int channels = in_dims[1];
|
|
int height = in_dims[2];
|
|
int width = in_dims[3];
|
|
|
|
int rois_num = rois->dims()[0];
|
|
auto out_dims = in_dims;
|
|
out_dims[0] = rois_num;
|
|
out_dims[1] = in_dims[1];
|
|
out_dims[2] = pooled_height;
|
|
out_dims[3] = pooled_width;
|
|
|
|
out->Resize(out_dims);
|
|
out->mutable_data<T>(ctx.GetPlace());
|
|
math::SetConstant<Place, T> set_zero;
|
|
set_zero(ctx.device_context(), out, static_cast<T>(0));
|
|
argmax->Resize(out->dims());
|
|
argmax->mutable_data<int64_t>(ctx.GetPlace());
|
|
math::SetConstant<Place, int64_t> set_init;
|
|
set_init(ctx.device_context(), argmax, static_cast<int64_t>(-1));
|
|
|
|
if (rois_num== 0) return;
|
|
|
|
int output_size = out->numel();
|
|
int blocks = PADDLE_OPERATORS_ROIPOOL_GET_BLOCKS(output_size);
|
|
int threads = PADDLE_OPERATORS_ROIPOOL_CUDA_NUM_THREADS;
|
|
|
|
GPURoiPoolForward<T>
|
|
<<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>(
|
|
output_size,
|
|
in->data<T>(),
|
|
rois->data<int64_t>(),
|
|
spatial_scale,
|
|
channels,
|
|
height,
|
|
width,
|
|
pooled_height,
|
|
pooled_width,
|
|
out->mutable_data<T>(ctx.GetPlace()),
|
|
argmax->mutable_data<int64_t>(ctx.GetPlace()));
|
|
|
|
return;
|
|
}
|
|
};
|
|
|
|
template <typename Place, typename T>
|
|
class GPURoiPoolGradOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* in = ctx.Input<Tensor>("X");
|
|
auto* rois = ctx.Input<Tensor>("Rois");
|
|
auto* argmax = ctx.Input<Tensor>("Argmax");
|
|
|
|
auto* out_grad =
|
|
ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto* x_grad =
|
|
ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
auto pooled_height = ctx.Attr<int>("pooled_height");
|
|
auto pooled_width = ctx.Attr<int>("pooled_width");
|
|
auto spatial_scale = ctx.Attr<float>("spatial_scale");
|
|
|
|
int rois_num = rois->dims()[0];
|
|
int channels = in->dims()[1];
|
|
int height = in->dims()[2];
|
|
int width = in->dims()[3];
|
|
|
|
if (x_grad) {
|
|
x_grad->Resize(in->dims());
|
|
x_grad->mutable_data<T>(ctx.GetPlace());
|
|
math::SetConstant<Place, T> set_zero;
|
|
set_zero(ctx.device_context(), x_grad, static_cast<T>(0));
|
|
|
|
int output_grad_size = out_grad->numel();
|
|
int blocks = PADDLE_OPERATORS_ROIPOOL_GET_BLOCKS(output_grad_size);
|
|
int threads = PADDLE_OPERATORS_ROIPOOL_CUDA_NUM_THREADS;
|
|
|
|
if (output_grad_size > 0) {
|
|
GPURoiPoolBackward<T>
|
|
<<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>(
|
|
output_grad_size,
|
|
rois->data<int64_t>(),
|
|
out_grad->data<T>(),
|
|
argmax->data<int64_t>(),
|
|
rois_num,
|
|
spatial_scale,
|
|
channels,
|
|
height,
|
|
width,
|
|
pooled_height,
|
|
pooled_width,
|
|
x_grad->mutable_data<T>(ctx.GetPlace()));
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_GPU_KERNEL(
|
|
roi_pool,
|
|
ops::GPURoiPoolOpKernel<paddle::platform::GPUPlace, float>);
|
|
REGISTER_OP_GPU_KERNEL(
|
|
roi_pool_grad,
|
|
ops::GPURoiPoolGradOpKernel<paddle::platform::GPUPlace, float>);
|