You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/benchmark/fluid/models/resnet_with_preprocess.py

264 lines
9.5 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import numpy as np
import time
import os
import cProfile, pstats, StringIO
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler
# from recordio_converter import imagenet_train, imagenet_test
from imagenet_reader import train_raw, val
def conv_bn_layer(input,
ch_out,
filter_size,
stride,
padding,
act='relu',
is_train=True):
conv1 = fluid.layers.conv2d(
input=input,
filter_size=filter_size,
num_filters=ch_out,
stride=stride,
padding=padding,
act=None,
bias_attr=False)
return fluid.layers.batch_norm(input=conv1, act=act, is_test=not is_train)
def shortcut(input, ch_out, stride, is_train=True):
ch_in = input.shape[1] # if args.data_format == 'NCHW' else input.shape[-1]
if ch_in != ch_out:
return conv_bn_layer(
input, ch_out, 1, stride, 0, None, is_train=is_train)
else:
return input
def basicblock(input, ch_out, stride, is_train=True):
short = shortcut(input, ch_out, stride, is_train=is_train)
conv1 = conv_bn_layer(input, ch_out, 3, stride, 1, is_train=is_train)
conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, act=None, is_train=is_train)
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
def bottleneck(input, ch_out, stride, is_train=True):
short = shortcut(input, ch_out * 4, stride, is_train=is_train)
conv1 = conv_bn_layer(input, ch_out, 1, stride, 0, is_train=is_train)
conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, is_train=is_train)
conv3 = conv_bn_layer(
conv2, ch_out * 4, 1, 1, 0, act=None, is_train=is_train)
return fluid.layers.elementwise_add(x=short, y=conv3, act='relu')
def layer_warp(block_func, input, ch_out, count, stride):
res_out = block_func(input, ch_out, stride)
for i in range(1, count):
res_out = block_func(res_out, ch_out, 1)
return res_out
def resnet_imagenet(input,
class_dim,
depth=50,
data_format='NCHW',
is_train=True):
cfg = {
18: ([2, 2, 2, 1], basicblock),
34: ([3, 4, 6, 3], basicblock),
50: ([3, 4, 6, 3], bottleneck),
101: ([3, 4, 23, 3], bottleneck),
152: ([3, 8, 36, 3], bottleneck)
}
stages, block_func = cfg[depth]
conv1 = conv_bn_layer(input, ch_out=64, filter_size=7, stride=2, padding=3)
pool1 = fluid.layers.pool2d(
input=conv1, pool_type='avg', pool_size=3, pool_stride=2)
res1 = layer_warp(block_func, pool1, 64, stages[0], 1)
res2 = layer_warp(block_func, res1, 128, stages[1], 2)
res3 = layer_warp(block_func, res2, 256, stages[2], 2)
res4 = layer_warp(block_func, res3, 512, stages[3], 2)
pool2 = fluid.layers.pool2d(
input=res4,
pool_size=7,
pool_type='avg',
pool_stride=1,
global_pooling=True)
out = fluid.layers.fc(input=pool2, size=class_dim, act='softmax')
return out
def resnet_cifar10(input, class_dim, depth=32, data_format='NCHW'):
assert (depth - 2) % 6 == 0
n = (depth - 2) // 6
conv1 = conv_bn_layer(
input=input, ch_out=16, filter_size=3, stride=1, padding=1)
res1 = layer_warp(basicblock, conv1, 16, n, 1)
res2 = layer_warp(basicblock, res1, 32, n, 2)
res3 = layer_warp(basicblock, res2, 64, n, 2)
pool = fluid.layers.pool2d(
input=res3, pool_size=8, pool_type='avg', pool_stride=1)
out = fluid.layers.fc(input=pool, size=class_dim, act='softmax')
return out
def _model_reader_dshape_classdim(args, is_train):
model = resnet_cifar10
reader = None
if args.data_set == "cifar10":
class_dim = 10
if args.data_format == 'NCHW':
dshape = [3, 32, 32]
else:
dshape = [32, 32, 3]
model = resnet_cifar10
if is_train:
reader = paddle.dataset.cifar.train10()
else:
reader = paddle.dataset.cifar.test10()
elif args.data_set == "flowers":
class_dim = 102
if args.data_format == 'NCHW':
dshape = [3, 224, 224]
else:
dshape = [224, 224, 3]
model = resnet_imagenet
if is_train:
reader = paddle.dataset.flowers.train()
else:
reader = paddle.dataset.flowers.test()
elif args.data_set == "imagenet":
class_dim = 1000
if args.data_format == 'NCHW':
dshape = [3, 224, 224]
else:
dshape = [224, 224, 3]
model = resnet_imagenet
if not args.data_path:
raise Exception(
"Must specify --data_path when training with imagenet")
if not args.use_reader_op:
if is_train:
reader = train_raw()
else:
reader = val()
else:
if is_train:
reader = train_raw()
else:
reader = val(xmap=False)
return model, reader, dshape, class_dim
def get_model(args, is_train, main_prog, startup_prog):
model, reader, dshape, class_dim = _model_reader_dshape_classdim(args,
is_train)
pyreader = None
trainer_count = int(os.getenv("PADDLE_TRAINERS"))
with fluid.program_guard(main_prog, startup_prog):
with fluid.unique_name.guard():
if args.use_reader_op:
pyreader = fluid.layers.py_reader(
capacity=args.batch_size * args.gpus,
shapes=([-1] + dshape, (-1, 1)),
dtypes=('uint8', 'int64'),
name="train_reader" if is_train else "test_reader",
use_double_buffer=True)
input, label = fluid.layers.read_file(pyreader)
else:
input = fluid.layers.data(
name='data', shape=dshape, dtype='uint8')
label = fluid.layers.data(
name='label', shape=[1], dtype='int64')
# add imagenet preprocessors
random_crop = fluid.layers.random_crop(input, dshape)
casted = fluid.layers.cast(random_crop, 'float32')
# input is HWC
trans = fluid.layers.transpose(casted, [0, 3, 1, 2]) / 255.0
img_mean = fluid.layers.tensor.assign(
np.array([0.485, 0.456, 0.406]).astype('float32').reshape((3, 1,
1)))
img_std = fluid.layers.tensor.assign(
np.array([0.229, 0.224, 0.225]).astype('float32').reshape((3, 1,
1)))
h1 = fluid.layers.elementwise_sub(trans, img_mean, axis=1)
h2 = fluid.layers.elementwise_div(h1, img_std, axis=1)
# pre_out = (trans - img_mean) / img_std
predict = model(h2, class_dim, is_train=is_train)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
batch_acc1 = fluid.layers.accuracy(input=predict, label=label, k=1)
batch_acc5 = fluid.layers.accuracy(input=predict, label=label, k=5)
# configure optimize
optimizer = None
if is_train:
total_images = 1281167 / trainer_count
step = int(total_images / args.batch_size + 1)
epochs = [30, 60, 80, 90]
bd = [step * e for e in epochs]
base_lr = args.learning_rate
lr = []
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
optimizer = fluid.optimizer.Momentum(
learning_rate=base_lr,
#learning_rate=fluid.layers.piecewise_decay(
# boundaries=bd, values=lr),
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
optimizer.minimize(avg_cost)
if args.memory_optimize:
fluid.memory_optimize(main_prog)
# config readers
if not args.use_reader_op:
batched_reader = paddle.batch(
reader if args.no_random else paddle.reader.shuffle(
reader, buf_size=5120),
batch_size=args.batch_size * args.gpus,
drop_last=True)
else:
batched_reader = None
pyreader.decorate_paddle_reader(
paddle.batch(
# reader if args.no_random else paddle.reader.shuffle(
# reader, buf_size=5120),
reader,
batch_size=args.batch_size))
return avg_cost, optimizer, [batch_acc1,
batch_acc5], batched_reader, pyreader