You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
89 lines
3.3 KiB
89 lines
3.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "mkldnn.hpp"
|
|
#include "paddle/fluid/framework/data_layout_transform.h"
|
|
#include "paddle/fluid/framework/tensor.h"
|
|
#include "paddle/fluid/operators/dequantize_op.h"
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using mkldnn::memory;
|
|
using mkldnn::primitive;
|
|
using mkldnn::reorder;
|
|
using platform::to_void_cast;
|
|
using Tensor = framework::Tensor;
|
|
using framework::DataLayout;
|
|
using mkldnn::stream;
|
|
using platform::GetMKLDNNFormat;
|
|
|
|
template <typename T>
|
|
class DeQuantOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* input = ctx.Input<Tensor>("Input");
|
|
auto scale_data = ctx.Attr<float>("Scale");
|
|
auto* output = ctx.Output<Tensor>("Output");
|
|
auto& dev_ctx =
|
|
ctx.template device_context<platform::MKLDNNDeviceContext>();
|
|
const auto& engine = dev_ctx.GetEngine();
|
|
|
|
const T* input_data = input->data<T>();
|
|
float* output_data = output->mutable_data<float>(ctx.GetPlace());
|
|
std::vector<float> reorder_scale = {1.0f / scale_data};
|
|
|
|
std::vector<primitive> pipeline;
|
|
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
|
|
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
|
|
mkldnn::memory::data_type src_dt =
|
|
paddle::framework::ToMKLDNNDataType(input->type());
|
|
mkldnn::memory::format src_fmt = input->format();
|
|
|
|
mkldnn::primitive_attr attri;
|
|
int mask = 0;
|
|
attri.set_output_scales(mask, reorder_scale);
|
|
|
|
auto src_md = platform::MKLDNNMemDesc({src_tz}, src_dt, src_fmt);
|
|
auto src_pd = mkldnn::memory::primitive_desc(src_md, engine);
|
|
auto src_memory =
|
|
std::make_shared<mkldnn::memory>(src_pd, to_void_cast<T>(input_data));
|
|
std::shared_ptr<primitive::at> src_memory_p =
|
|
std::shared_ptr<primitive::at>(new primitive::at(*src_memory));
|
|
|
|
auto dst_md = platform::MKLDNNMemDesc({dst_tz}, memory::data_type::f32,
|
|
memory::format::nchw);
|
|
auto dst_pd = mkldnn::memory::primitive_desc(dst_md, engine);
|
|
auto dst_memory = mkldnn::memory(dst_pd, to_void_cast<float>(output_data));
|
|
|
|
auto reorder_pd = std::shared_ptr<reorder::primitive_desc>(
|
|
new reorder::primitive_desc(src_pd, dst_pd, attri));
|
|
auto reorder_p = std::shared_ptr<reorder>(
|
|
new reorder(*reorder_pd, *src_memory_p, dst_memory));
|
|
pipeline.push_back(*reorder_p);
|
|
stream(stream::kind::eager).submit(pipeline).wait();
|
|
|
|
output->set_format(GetMKLDNNFormat(dst_memory));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_KERNEL(dequantize, MKLDNN, ::paddle::platform::CPUPlace,
|
|
ops::DeQuantOpKernel<uint8_t>, ops::DeQuantOpKernel<int8_t>);
|