You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/operators/recurrent_network_op.cc

390 lines
15 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/recurrent_network_op.h"
#include <glog/logging.h>
#include <cstring>
#include <sstream>
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
#include "paddle/platform/enforce.h"
namespace paddle {
namespace operators {
namespace rnn {
void SegmentInputs(std::vector<std::shared_ptr<Scope>>& step_scopes,
const std::vector<Link>& inlinks,
const size_t seq_len,
bool infer_shape_mode) {
PADDLE_ENFORCE(!inlinks.empty(), "no in links are provided.");
for (size_t i = 0; i < inlinks.size(); ++i) {
auto input_var = step_scopes[0]->GetVariable(inlinks[i].external);
PADDLE_ENFORCE(input_var != nullptr,
"input link [%s] is not in scope.",
inlinks[i].external);
Tensor* input = input_var->GetMutable<Tensor>();
DDim dims = input->dims();
PADDLE_ENFORCE(static_cast<size_t>(dims[0]) == seq_len,
"all the inlinks must have same length");
DDim step_dims = slice_ddim(dims, 1, dims.size());
for (size_t j = 0; j < seq_len; j++) {
Tensor* step_input = step_scopes[j]
->CreateVariable(inlinks[i].internal)
->GetMutable<Tensor>();
if (!infer_shape_mode) {
*step_input = input->Slice<float>(j, j + 1);
}
step_input->Resize(step_dims);
}
}
}
void ConcatOutputs(std::vector<std::shared_ptr<Scope>>& step_scopes,
const std::vector<Link>& outlinks,
const size_t seq_len,
bool infer_shape_mode) {
for (size_t i = 0; i < outlinks.size(); i++) {
PADDLE_ENFORCE(step_scopes[0]->HasVariable(outlinks[i].external),
"output link [%s] is not in scope.",
outlinks[i].external);
Tensor* output =
step_scopes[0]->GetVariable(outlinks[i].external)->GetMutable<Tensor>();
if (infer_shape_mode) {
DDim step_dims = step_scopes[0]
->GetVariable(outlinks[i].internal)
->GetMutable<Tensor>()
->dims();
std::vector<int> dims_vec = vectorize(step_dims);
dims_vec.insert(dims_vec.begin(), seq_len);
output->Resize(make_ddim(dims_vec));
} else {
output->mutable_data<float>(platform::CPUPlace());
for (size_t j = 0; j < seq_len; j++) {
Tensor* step_output = step_scopes[j]
->GetVariable(outlinks[i].internal)
->GetMutable<Tensor>();
// TODO(luotao02) data type and platform::DeviceContext() should set
// correctly
(output->Slice<float>(j, j + 1))
.CopyFrom<float>(*step_output, platform::CPUPlace());
}
}
}
}
void LinkMemories(std::vector<std::shared_ptr<Scope>>& scopes,
const std::vector<rnn::MemoryAttr>& memories,
const size_t step_id,
const int offset,
bool infer_shape_mode) {
PADDLE_ENFORCE(step_id < scopes.size(),
"step [%d] is out of range of step scopes' size [%d]",
step_id,
scopes.size());
PADDLE_ENFORCE(static_cast<int>(step_id) + offset >= 0,
"offset [%d] must be large than -[%d]",
offset,
step_id);
PADDLE_ENFORCE(step_id + offset < scopes.size(),
"offset [%d] is out of range, it must be less than (%d - %d)",
offset,
scopes.size(),
step_id);
std::shared_ptr<Scope> scope = scopes[step_id];
std::shared_ptr<Scope> linked_scope = scopes[step_id + offset];
for (auto& attr : memories) {
auto mem = scope->GetVariable(attr.pre_var)->GetMutable<Tensor>();
// maybe share variable is better?
auto linked_mem = linked_scope->GetVariable(attr.var)->GetMutable<Tensor>();
if (infer_shape_mode) {
mem->Resize(linked_mem->dims());
} else {
mem->ShareDataWith<float>(*linked_mem);
}
}
}
void InitArgument(const ArgumentName& name,
Argument* arg,
const OperatorBase& op) {
arg->step_net = op.Input(name.step_net);
arg->step_scopes = op.Output(name.step_scopes);
auto inlinks = op.Inputs(name.inlinks);
auto inlink_alias = op.GetAttr<std::vector<std::string>>(name.inlink_alias);
PADDLE_ENFORCE(inlinks.size() == inlink_alias.size(),
"the size of inlinks and inlink_alias don't match:%d,%d",
inlinks.size(),
inlink_alias.size());
for (size_t i = 0; i < inlinks.size(); ++i) {
rnn::Link link;
link.external = inlinks[i];
link.internal = inlink_alias[i];
(arg->inlinks).push_back(link);
}
auto outlinks = op.Outputs(name.outlinks);
auto outlink_alias = op.GetAttr<std::vector<std::string>>(name.outlink_alias);
PADDLE_ENFORCE(outlinks.size() == outlink_alias.size(),
"the size of outlinks and outlink_alias don't match:%d,%d",
outlinks.size(),
outlink_alias.size());
for (size_t i = 0; i < outlinks.size(); ++i) {
rnn::Link link;
link.external = outlinks[i];
link.internal = outlink_alias[i];
(arg->outlinks).push_back(link);
}
auto boot_memories = op.Inputs(name.boot_memories);
// attributes
auto memories = op.GetAttr<std::vector<std::string>>(name.memories);
auto pre_memories = op.GetAttr<std::vector<std::string>>(name.pre_memories);
PADDLE_ENFORCE(memories.size() == boot_memories.size(),
"the size of memories, boot_memories don't match:%d,%d",
memories.size(),
boot_memories.size());
PADDLE_ENFORCE(pre_memories.size() == boot_memories.size(),
"the size of pre_memories, boot_memories don't match:%d,%d",
pre_memories.size(),
boot_memories.size());
PADDLE_ENFORCE(memories.size() > 0, "more than 1 memories should be set");
for (size_t i = 0; i < memories.size(); ++i) {
rnn::MemoryAttr mem_attr;
mem_attr.var = memories[i];
mem_attr.pre_var = pre_memories[i];
mem_attr.boot_var = boot_memories[i];
(arg->memories).push_back(mem_attr);
}
}
} // namespace rnn
void RecurrentAlgorithm::InferShape(const std::shared_ptr<Scope>& scope) const {
seq_len_ = scope->GetVariable((arg_->inlinks[0]).external)
->GetMutable<Tensor>()
->dims()[0];
CreateScopes(scope);
auto step_scopes = GetStepScopes(scope);
rnn::SegmentInputs(
step_scopes, arg_->inlinks, seq_len_, true /*infer_shape_mode*/);
InitMemories(step_scopes[0], true /*infer_shape_mode*/);
Variable* net = scope->GetVariable(arg_->step_net);
PADDLE_ENFORCE(net != nullptr, "failed to get step net");
for (size_t i = 0; i < seq_len_; i++) {
if (i > 0) {
rnn::LinkMemories(
step_scopes, arg_->memories, i, -1, true /*infer_shape_mode*/);
}
net->GetMutable<NetOp>()->InferShape(step_scopes[i]);
}
rnn::ConcatOutputs(
step_scopes, arg_->outlinks, seq_len_, true /*infer_shape_mode*/);
}
void RecurrentAlgorithm::Run(const std::shared_ptr<Scope>& scope,
const platform::DeviceContext& dev_ctx) const {
auto step_scopes = GetStepScopes(scope);
rnn::SegmentInputs(
step_scopes, arg_->inlinks, seq_len_, false /*infer_shape_mode*/);
InitMemories(step_scopes[0], false /*infer_shape_mode*/);
Variable* net = scope->GetVariable(arg_->step_net);
for (size_t step_id = 0; step_id < seq_len_; step_id++) {
if (step_id > 0) {
rnn::LinkMemories(
step_scopes, arg_->memories, step_id, -1, false /*infer_shape_mode*/);
}
net->GetMutable<NetOp>()->Run(step_scopes[step_id], dev_ctx);
}
rnn::ConcatOutputs(
step_scopes, arg_->outlinks, seq_len_, false /*infer_shape_mode*/);
}
void RecurrentAlgorithm::CreateScopes(std::shared_ptr<Scope> scope) const {
// TODO(xxx) Only two scopes are needed for inference, this case will be
// supported later.
auto step_scopes = scope->GetVariable(arg_->step_scopes)
->GetMutable<std::vector<std::shared_ptr<Scope>>>();
if (seq_len_ > step_scopes->size()) {
for (size_t i = step_scopes->size(); i < seq_len_; ++i) {
std::shared_ptr<Scope> step_scope = std::make_shared<Scope>(scope);
// Now all variables in scope must be created outside of op.
auto net_op = scope->GetVariable(arg_->step_net)->GetMutable<NetOp>();
for (auto& input : net_op->inputs_) {
// the weight are located in parent scope
step_scope->CreateVariable(input);
}
for (auto& output : net_op->outputs_) {
step_scope->CreateVariable(output);
}
step_scopes->push_back(std::make_shared<Scope>(step_scope));
}
}
}
void RecurrentAlgorithm::InitMemories(std::shared_ptr<Scope> step_scope,
bool infer_shape_mode) const {
for (auto& attr : arg_->memories) {
Tensor* pre_mem =
step_scope->CreateVariable(attr.pre_var)->GetMutable<Tensor>();
PADDLE_ENFORCE(step_scope->HasVariable(attr.boot_var),
"memory [%s]'s boot variable [%s] not exists",
attr.var,
attr.boot_var);
Tensor* boot_mem =
step_scope->GetVariable(attr.boot_var)->GetMutable<Tensor>();
if (infer_shape_mode) {
pre_mem->Resize(boot_mem->dims());
} else {
pre_mem->ShareDataWith<float>(*boot_mem);
}
}
}
const rnn::ArgumentName RecurrentOp::kArgName{"step_net",
"step_scopes",
"inlinks",
"outlinks",
"inlink_alias",
"outlink_alias",
"memories",
"pre_memories",
"boot_memories"};
const rnn::ArgumentName RecurrentGradientOp::kArgName{"step_net",
"step_scopes",
"outlink@grad",
"inlink@grad",
"inlink_alias",
"outlink_alias",
"memories",
"pre_memories",
"boot_memories@grad"};
void RecurrentOp::Init() {
OperatorBase::Init();
std::unique_ptr<rnn::Argument> arg(new rnn::Argument());
rnn::InitArgument(kArgName, arg.get(), *this);
alg_.Init(std::move(arg));
}
class RecurrentAlgorithmProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
public:
RecurrentAlgorithmProtoAndCheckerMaker(OpProto* proto,
OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
const auto& name = RecurrentOp::kArgName;
// inputs and outputs stored in proto
AddInputs(name.inlinks,
"the input that need to be segmented for each step.");
AddInputs(name.boot_memories, "variables to initialize memories.");
AddInput(name.step_net, "network shared by all steps.");
AddOutputs(name.outlinks,
"the output that need to concated for all steps.");
AddOutput(name.step_scopes, "step scopes");
// Attributes stored in AttributeMap
AddAttr<std::vector<std::string>>(name.inlink_alias, "alias of inlinks");
AddAttr<std::vector<std::string>>(name.outlink_alias, "alias of outlinks");
AddAttr<std::vector<std::string>>(name.pre_memories,
"names of pre-memories");
AddAttr<std::vector<std::string>>(name.memories, "names of memories");
AddComment("This is a recurrent group operator.");
}
};
void RecurrentGradientAlgorithm::Run(
const std::shared_ptr<Scope>& scope,
const platform::DeviceContext& dev_ctx) const {
auto step_scopes = GetStepScopes(scope);
rnn::SegmentInputs(
step_scopes, arg_->inlinks, seq_len_, false /*infer_shape_mode*/);
Variable* net = scope->GetVariable(arg_->step_net);
for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
if (static_cast<size_t>(step_id) != seq_len_ - 1) {
rnn::LinkMemories(
step_scopes, arg_->memories, step_id, 1, false /*infer_shape_mode*/);
}
net->GetMutable<NetOp>()->Run(step_scopes[step_id], dev_ctx);
}
LinkBootMemoryGradients(step_scopes[0], false);
rnn::ConcatOutputs(
step_scopes, arg_->outlinks, seq_len_, false /*infer_shape_mode*/);
}
void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
std::shared_ptr<Scope> step_scope, bool infer_shape_mode) const {
for (auto& attr : arg_->memories) {
Tensor* mem_grad =
step_scope->CreateVariable(attr.var)->GetMutable<Tensor>();
PADDLE_ENFORCE(step_scope->HasVariable(attr.boot_var),
"memory [%s]'s boot variable [%s] not exists",
attr.var,
attr.boot_var);
Tensor* boot_mem_grad =
step_scope->CreateVariable(attr.boot_var)->GetMutable<Tensor>();
if (infer_shape_mode) {
boot_mem_grad->Resize(mem_grad->dims());
} else {
boot_mem_grad->ShareDataWith<float>(*mem_grad);
}
}
}
void RecurrentGradientAlgorithm::InferShape(
const std::shared_ptr<Scope>& scope) const {
seq_len_ = scope->GetVariable((arg_->inlinks[0]).external)
->GetMutable<Tensor>()
->dims()[0];
auto step_scopes = GetStepScopes(scope);
rnn::SegmentInputs(
step_scopes, arg_->inlinks, seq_len_, true /*infer_shape_mode*/);
Variable* net = scope->GetVariable(arg_->step_net);
PADDLE_ENFORCE(net != nullptr, "failed to get step net");
for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
if (static_cast<size_t>(step_id) != seq_len_ - 1) {
rnn::LinkMemories(
step_scopes, arg_->memories, step_id, 1, true /*infer_shape_mode*/);
}
net->GetMutable<NetOp>()->InferShape(step_scopes[step_id]);
}
rnn::ConcatOutputs(
step_scopes, arg_->outlinks, seq_len_, true /*infer_shape_mode*/);
LinkBootMemoryGradients(step_scopes[0], true /*infer_shape_mode*/);
}
void RecurrentGradientOp::Init() {
OperatorBase::Init();
std::unique_ptr<rnn::Argument> arg(new rnn::Argument());
rnn::InitArgument(kArgName, arg.get(), *this);
alg_.Init(std::move(arg));
}
} // namespace operators
} // namespace paddle
REGISTER_OP(recurrent_op,
paddle::operators::RecurrentOp,
paddle::operators::RecurrentAlgorithmProtoAndCheckerMaker);