You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
222 lines
6.4 KiB
222 lines
6.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include "paddle/framework/operator.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using namespace paddle::framework;
|
|
|
|
namespace rnn {
|
|
|
|
/**
|
|
* Memory of a RNN (same as the role of `Momory` in PaddlePaddle).
|
|
*
|
|
* Memory attributes cached by this op, dims will be infered from
|
|
* boot memories in father scope. Other attributes are copied from Op's proto
|
|
* attributes.
|
|
*/
|
|
struct MemoryAttr {
|
|
// name of current state variable
|
|
std::string var;
|
|
// name of previous step's state variable
|
|
std::string pre_var;
|
|
// name of the variables to init this memory (same role of `boot_layer` in
|
|
// PaddlePaddle), which is store in father's scope.
|
|
std::string boot_var;
|
|
};
|
|
|
|
struct Link {
|
|
// input or output links name.
|
|
std::string internal;
|
|
// alias to avoid duplicate keys in scopes.
|
|
std::string external;
|
|
};
|
|
|
|
struct Argument {
|
|
std::string step_net;
|
|
std::string step_scopes;
|
|
std::vector<Link> inlinks;
|
|
std::vector<Link> outlinks;
|
|
std::vector<rnn::MemoryAttr> memories;
|
|
};
|
|
|
|
struct ArgumentName {
|
|
std::string step_net;
|
|
std::string step_scopes;
|
|
std::string inlinks;
|
|
std::string outlinks;
|
|
std::string inlink_alias; // the alias of inlinks in step net.
|
|
std::string outlink_alias; // the alias of outlinks in step net.
|
|
std::string memories; // the memory name
|
|
std::string pre_memories; // the previous memory name
|
|
std::string boot_memories; // the boot memory name
|
|
};
|
|
|
|
/**
|
|
* Prepare inputs for each step net.
|
|
*/
|
|
void SegmentInputs(std::vector<std::shared_ptr<Scope>>& step_scopes,
|
|
const std::vector<Link>& inlinks,
|
|
const size_t seq_len,
|
|
bool infer_shape_mode);
|
|
|
|
/**
|
|
* Process outputs of step nets and merge to variables.
|
|
*/
|
|
void ConcatOutputs(std::vector<std::shared_ptr<Scope>>& step_scopes,
|
|
const std::vector<Link>& outlinks,
|
|
const size_t seq_len,
|
|
bool infer_shape_mode);
|
|
|
|
void LinkMemories(std::vector<std::shared_ptr<Scope>>& step_scopes,
|
|
const std::vector<MemoryAttr>& memories,
|
|
const size_t step_id,
|
|
const int offset,
|
|
bool infer_shape_mode);
|
|
|
|
void InitArgument(const ArgumentName& name, Argument* arg);
|
|
|
|
}; // namespace rnn
|
|
|
|
// The sequence format in RecurrentOp is Tensor<seq_len, batch_size, dim> now.
|
|
// TODO:
|
|
// 1. No-padding computing for sequences with indifinite length in one batch.
|
|
// 2. Hierarchical RNN for sequence with sub-sequence.
|
|
// 3. Internal Memory.
|
|
// 4. More Complex RNN architecture, such as Gated Feedback RNN.
|
|
// Refer to: https://arxiv.org/pdf/1502.02367.pdf
|
|
|
|
class RecurrentAlgorithm {
|
|
public:
|
|
void Run(const std::shared_ptr<Scope>& scope,
|
|
const platform::DeviceContext& dev_ctx) const;
|
|
|
|
void Init(std::unique_ptr<rnn::Argument> arg) { arg_ = std::move(arg); }
|
|
|
|
/**
|
|
* InferShape must be called before Run.
|
|
*/
|
|
void InferShape(const std::shared_ptr<Scope>& scope) const;
|
|
|
|
protected:
|
|
/*
|
|
* The step scopes will be stored in the father scope as a variable.
|
|
*
|
|
* NOTE the scopes are reused in both the forward and backward, so just
|
|
* create once and expand its size if more steps need.
|
|
*/
|
|
void CreateScopes(std::shared_ptr<Scope> scope) const;
|
|
|
|
inline const std::vector<std::shared_ptr<Scope>>& GetStepScopes(
|
|
std::shared_ptr<Scope> scope) const {
|
|
return *(scope->GetVariable(arg_->step_scopes))
|
|
->GetMutable<std::vector<std::shared_ptr<Scope>>>();
|
|
}
|
|
|
|
void InitMemories(std::shared_ptr<Scope> step_scopes,
|
|
bool infer_shape_mode) const;
|
|
|
|
private:
|
|
std::unique_ptr<rnn::Argument> arg_;
|
|
mutable size_t seq_len_;
|
|
};
|
|
|
|
class RecurrentGradientAlgorithm {
|
|
/**
|
|
* RNN's backward alogorithm.
|
|
*
|
|
* To accelerate the development of RecurrentGradientOp, we decouple RNN's
|
|
* algorithm and `OperatorBase`'s implementation, the former contains the core
|
|
* implementation of a RNN, and will keep stable even if the framework changes
|
|
* a
|
|
* lot, and the latter is a wrapper acts like an dapter for it to make RNN an
|
|
* operator.
|
|
*/
|
|
public:
|
|
void Init(std::unique_ptr<rnn::Argument> arg) { arg_ = std::move(arg); }
|
|
|
|
void Run(const std::shared_ptr<Scope>& scope,
|
|
const platform::DeviceContext& dev_ctx) const;
|
|
|
|
void LinkBootMemoryGradients(std::shared_ptr<Scope> step_scopes,
|
|
bool infer_shape_mode) const;
|
|
|
|
/**
|
|
* InferShape must be called before Run.
|
|
*/
|
|
void InferShape(const std::shared_ptr<Scope>& scope) const;
|
|
|
|
protected:
|
|
inline const std::vector<std::shared_ptr<Scope>>& GetStepScopes(
|
|
std::shared_ptr<Scope> scope) const {
|
|
return *(scope->GetVariable(arg_->step_scopes))
|
|
->GetMutable<std::vector<std::shared_ptr<Scope>>>();
|
|
}
|
|
|
|
private:
|
|
std::unique_ptr<rnn::Argument> arg_;
|
|
mutable size_t seq_len_;
|
|
};
|
|
|
|
class RecurrentOp final : public OperatorBase {
|
|
public:
|
|
void Init() override;
|
|
|
|
/**
|
|
* InferShape must be called before Run.
|
|
*/
|
|
virtual void InferShape(const std::shared_ptr<Scope>& scope) const override {
|
|
alg_.InferShape(scope);
|
|
}
|
|
|
|
virtual void Run(const std::shared_ptr<Scope>& scope,
|
|
const platform::DeviceContext& dev_ctx) const override {
|
|
alg_.Run(scope, dev_ctx);
|
|
}
|
|
|
|
static const rnn::ArgumentName kArgName;
|
|
|
|
private:
|
|
RecurrentAlgorithm alg_;
|
|
};
|
|
|
|
class RecurrentGradientOp final : public OperatorBase {
|
|
public:
|
|
void Init() override;
|
|
|
|
/**
|
|
* InferShape must be called before Run.
|
|
*/
|
|
virtual void InferShape(const std::shared_ptr<Scope>& scope) const override {
|
|
alg_.InferShape(scope);
|
|
}
|
|
|
|
virtual void Run(const std::shared_ptr<Scope>& scope,
|
|
const platform::DeviceContext& dev_ctx) const override {
|
|
alg_.Run(scope, dev_ctx);
|
|
}
|
|
|
|
static const rnn::ArgumentName kArgName;
|
|
|
|
private:
|
|
RecurrentGradientAlgorithm alg_;
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|