You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
121 lines
4.4 KiB
121 lines
4.4 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""VGG16 benchmark in Fluid"""
|
|
from __future__ import print_function
|
|
|
|
import sys
|
|
import time
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.core as core
|
|
import argparse
|
|
import functools
|
|
import os
|
|
|
|
|
|
def vgg16_bn_drop(input, is_train=True):
|
|
def conv_block(input, num_filter, groups, dropouts):
|
|
return fluid.nets.img_conv_group(
|
|
input=input,
|
|
pool_size=2,
|
|
pool_stride=2,
|
|
conv_num_filter=[num_filter] * groups,
|
|
conv_filter_size=3,
|
|
conv_act='relu',
|
|
conv_with_batchnorm=True,
|
|
conv_batchnorm_drop_rate=dropouts,
|
|
pool_type='max')
|
|
|
|
conv1 = conv_block(input, 64, 2, [0.3, 0])
|
|
conv2 = conv_block(conv1, 128, 2, [0.4, 0])
|
|
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
|
|
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
|
|
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
|
|
|
|
drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
|
|
fc1 = fluid.layers.fc(input=drop, size=512, act=None)
|
|
bn = fluid.layers.batch_norm(input=fc1, act='relu', is_test=not is_train)
|
|
drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
|
|
fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
|
|
return fc2
|
|
|
|
|
|
def get_model(args, is_train, main_prog, startup_prog):
|
|
if args.data_set == "cifar10":
|
|
classdim = 10
|
|
if args.data_format == 'NCHW':
|
|
data_shape = [3, 32, 32]
|
|
else:
|
|
data_shape = [32, 32, 3]
|
|
else:
|
|
classdim = 102
|
|
if args.data_format == 'NCHW':
|
|
data_shape = [3, 224, 224]
|
|
else:
|
|
data_shape = [224, 224, 3]
|
|
filelist = [
|
|
os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
|
|
]
|
|
with fluid.program_guard(main_prog, startup_prog):
|
|
if args.use_reader_op:
|
|
data_file_handle = fluid.layers.open_files(
|
|
filenames=filelist,
|
|
shapes=[[-1] + data_shape, (-1, 1)],
|
|
lod_levels=[0, 0],
|
|
dtypes=["float32", "int64"],
|
|
thread_num=1,
|
|
pass_num=1)
|
|
data_file = fluid.layers.double_buffer(
|
|
fluid.layers.batch(
|
|
data_file_handle, batch_size=args.batch_size))
|
|
with fluid.unique_name.guard():
|
|
if args.use_reader_op:
|
|
images, label = fluid.layers.read_file(data_file)
|
|
else:
|
|
images = fluid.layers.data(
|
|
name='data', shape=data_shape, dtype='float32')
|
|
label = fluid.layers.data(
|
|
name='label', shape=[1], dtype='int64')
|
|
# Train program
|
|
net = vgg16_bn_drop(images, is_train=is_train)
|
|
predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
|
|
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
# Evaluator
|
|
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
|
|
batch_acc = fluid.layers.accuracy(
|
|
input=predict, label=label, total=batch_size_tensor)
|
|
# Optimization
|
|
if is_train:
|
|
optimizer = fluid.optimizer.Adam(
|
|
learning_rate=args.learning_rate)
|
|
optimizer.minimize(avg_cost)
|
|
|
|
# data reader
|
|
if is_train:
|
|
reader = paddle.dataset.cifar.train10() \
|
|
if args.data_set == 'cifar10' else paddle.dataset.flowers.train()
|
|
else:
|
|
reader = paddle.dataset.cifar.test10() \
|
|
if args.data_set == 'cifar10' else paddle.dataset.flowers.test()
|
|
|
|
batched_reader = paddle.batch(
|
|
paddle.reader.shuffle(
|
|
reader, buf_size=5120),
|
|
batch_size=args.batch_size * args.gpus)
|
|
|
|
return avg_cost, optimizer, [batch_acc], batched_reader, data_file_handle
|