You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/data_transform.cc

117 lines
4.1 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/data_device_transform.h"
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/data_type_transform.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace framework {
static void PassTensorData(Tensor *from, Tensor *to) {
to->ShareDataWith(*from);
*from = Tensor();
}
void TransformData(const OpKernelType &expected_kernel_type,
const OpKernelType &kernel_type_for_var,
const Tensor &input_tensor, Tensor *output_tensor) {
bool transformed = false;
Tensor in;
in.ShareDataWith(input_tensor);
Tensor out;
DataLayout lin = kernel_type_for_var.data_layout_;
DataLayout lout = expected_kernel_type.data_layout_;
// do layout transform
if (NeedTransformLayout(lout, lin)) {
if (lin == DataLayout::kMKLDNN || lout == DataLayout::kMKLDNN) {
PADDLE_ENFORCE(
!(lin == DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN),
"No layout transform needed between two MKLDNN OPKernels");
if (lin != DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN) {
#ifdef PADDLE_WITH_MKLDNN
// Case1 - transform from Non-MKLDNN OPKernel to MKLDNN OPKernel
// Just set layout/format. No real transform occur
auto out_format = platform::MKLDNNFormatForSize(in.dims().size(),
ToMKLDNNFormat(lin));
out.ShareDataWith(input_tensor);
out.set_layout(DataLayout::kMKLDNN);
out.set_format(out_format);
#endif
} else {
// Case2 - transfrom from MKLDNN OPKernel to Non-MKLDNN OPKernel
// Do transform via MKLDNN lib
TransDataLayoutFromMKLDNN(kernel_type_for_var, expected_kernel_type, in,
&out);
}
} else {
// Case3 - transfrom between Non-MKLDNN OPKernels
TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out);
}
transformed = true;
PassTensorData(&out, &in);
}
// do data type transform
if (expected_kernel_type.data_type_ != kernel_type_for_var.data_type_) {
TransDataType(kernel_type_for_var, expected_kernel_type, in, &out);
transformed = true;
PassTensorData(&out, &in);
}
// do device transform
if (!platform::is_same_place(kernel_type_for_var.place_,
expected_kernel_type.place_)) {
TransDataDevice(in, expected_kernel_type.place_, &out);
transformed = true;
PassTensorData(&out, &in);
}
PADDLE_ENFORCE(transformed, "No transform is applied, please check!");
// get output data
output_tensor->ShareDataWith(in);
}
void SetTensorToVariable(const Variable &in_var, const Tensor &tensor,
Variable *out_var) {
if (in_var.IsType<LoDTensor>()) {
auto &in_lod_tensor = in_var.Get<LoDTensor>();
auto *tran_lod_tensor = out_var->GetMutable<LoDTensor>();
tran_lod_tensor->set_lod(in_lod_tensor.lod());
tran_lod_tensor->set_layout(in_lod_tensor.layout());
tran_lod_tensor->ShareDataWith(tensor);
} else if (in_var.IsType<SelectedRows>()) {
auto &in_selected_rows = in_var.Get<SelectedRows>();
auto *trans_selected_rows = out_var->GetMutable<SelectedRows>();
trans_selected_rows->set_height(in_selected_rows.height());
trans_selected_rows->set_rows(in_selected_rows.rows());
trans_selected_rows->mutable_value()->ShareDataWith(tensor);
} else {
PADDLE_THROW("unknown var type");
}
}
} // namespace framework
} // namespace paddle