You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/details/broadcast_op_handle.cc

170 lines
5.9 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
#include "paddle/fluid/framework/details/container_cast.h"
#include "paddle/fluid/framework/details/variable_visitor.h"
#include "paddle/fluid/platform/profiler.h"
namespace paddle {
namespace framework {
namespace details {
void BroadcastOpHandle::RunImpl() {
platform::RecordEvent record_event(Name(), dev_ctxes_.begin()->second);
if (places_.size() == 1) return;
// The input and output may have dummy vars.
VarHandle *in_var_handle;
{
auto in_var_handles = DynamicCast<VarHandle>(inputs_);
PADDLE_ENFORCE_EQ(in_var_handles.size(), 1,
"The number of input should be one.");
in_var_handle = in_var_handles[0];
}
auto out_var_handles = DynamicCast<VarHandle>(outputs_);
PADDLE_ENFORCE_EQ(
out_var_handles.size(), places_.size(),
"The number of output should equal to the number of places.");
WaitInputVarGenerated();
std::vector<const Scope *> var_scopes;
for (auto *s : local_scopes_) {
var_scopes.emplace_back(s->FindVar(kLocalExecScopeName)->Get<Scope *>());
}
auto *in_var =
var_scopes.at(in_var_handle->scope_idx_)->FindVar(in_var_handle->name_);
PADDLE_ENFORCE_NOT_NULL(in_var);
Tensor &in_tensor = VariableVisitor::GetMutableTensor(in_var);
InitOutputValue(*in_var_handle, out_var_handles);
if (platform::is_cpu_place(in_tensor.place())) {
for (auto *out_var_handle : out_var_handles) {
if (out_var_handle->IsTheSameVar(*in_var_handle)) {
continue;
}
auto &out_p = out_var_handle->place_;
auto *out_var = var_scopes.at(out_var_handle->scope_idx_)
->FindVar(out_var_handle->name_);
RunAndRecordEvent(out_p, [in_tensor, out_var] {
paddle::framework::TensorCopy(
in_tensor, platform::CPUPlace(),
&VariableVisitor::GetMutableTensor(out_var));
});
}
} else {
#ifdef PADDLE_WITH_CUDA
VarHandle *out_handle = nullptr;
int root_id = boost::get<platform::CUDAPlace>(in_tensor.place()).device;
std::vector<std::function<void()>> broadcast_calls;
int type = platform::ToNCCLDataType(in_tensor.type());
size_t numel = static_cast<size_t>(in_tensor.numel());
for (auto out_var_handle : out_var_handles) {
Variable *out_var = var_scopes.at(out_var_handle->scope_idx_)
->FindVar(out_var_handle->name_);
int dst_id =
boost::get<platform::CUDAPlace>(out_var_handle->place_).device;
auto &nccl_ctx = nccl_ctxs_->at(dst_id);
void *send_recv_buffer = nullptr;
if (root_id == dst_id) {
send_recv_buffer = const_cast<void *>(in_tensor.data<void>());
out_handle = out_var_handle;
} else {
send_recv_buffer = VariableVisitor::GetMutableTensor(out_var)
.Resize(in_tensor.dims())
.mutable_data(out_var_handle->place_);
}
broadcast_calls.emplace_back(
[send_recv_buffer, numel, type, root_id, &nccl_ctx] {
PADDLE_ENFORCE(platform::dynload::ncclBcast(
send_recv_buffer, numel, static_cast<ncclDataType_t>(type),
root_id, nccl_ctx.comm_, nccl_ctx.stream()));
});
}
this->RunAndRecordEvent([&] {
{
platform::NCCLGroupGuard guard;
for (auto &call : broadcast_calls) {
call();
}
}
if (!out_handle->IsTheSameVar(*in_var_handle)) {
auto out_var = var_scopes.at(in_var_handle->scope_idx_)
->FindVar(out_var_handles[0]->name_);
paddle::framework::TensorCopy(
in_tensor, in_var_handle->place_,
*(dev_ctxes_.at(in_var_handle->place_)),
&VariableVisitor::GetMutableTensor(out_var));
}
});
#else
PADDLE_THROW("CUDA is not enabled.");
#endif
}
}
void BroadcastOpHandle::InitOutputValue(
const VarHandle &in_var_handle,
const std::vector<VarHandle *> &out_var_handles) const {
std::vector<const Scope *> var_scopes;
for (auto *s : local_scopes_) {
var_scopes.emplace_back(s->FindVar(kLocalExecScopeName)->Get<Scope *>());
}
auto *in_var =
var_scopes.at(in_var_handle.scope_idx_)->FindVar(in_var_handle.name_);
Tensor &in_tensor = VariableVisitor::GetMutableTensor(in_var);
// NOTE: The tensors' Place of input and output must be all on GPU or all on
// CPU.
for (auto *out_var_handle : out_var_handles) {
if (out_var_handle->IsTheSameVar(in_var_handle)) {
continue;
}
auto t_out_p = out_var_handle->place_;
auto *out_var = var_scopes.at(out_var_handle->scope_idx_)
->FindVar(out_var_handle->name_);
PADDLE_ENFORCE_NOT_NULL(out_var);
if (is_gpu_place(in_tensor.place())) {
PADDLE_ENFORCE(platform::is_gpu_place(t_out_p),
"Places of input and output must be all on GPU.");
} else {
t_out_p = platform::CPUPlace();
}
VariableVisitor::ShareDimsAndLoD(*in_var, out_var);
VariableVisitor::GetMutableTensor(out_var).mutable_data(t_out_p,
in_tensor.type());
}
}
std::string BroadcastOpHandle::Name() const { return "broadcast"; }
} // namespace details
} // namespace framework
} // namespace paddle