You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
335 lines
9.9 KiB
335 lines
9.9 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/framework/tensor_util.h"
|
|
#include <gtest/gtest.h>
|
|
#include <cmath>
|
|
#include <string>
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
TEST(TensorCopy, Tensor) {
|
|
Tensor src_tensor;
|
|
Tensor dst_tensor;
|
|
platform::CPUDeviceContext cpu_ctx((platform::CPUPlace()));
|
|
|
|
int* src_ptr =
|
|
src_tensor.mutable_data<int>(make_ddim({3, 3}), platform::CPUPlace());
|
|
|
|
int arr[9] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
|
|
memcpy(src_ptr, arr, 9 * sizeof(int));
|
|
src_tensor.set_layout(DataLayout::kAnyLayout);
|
|
|
|
auto cpu_place = new platform::CPUPlace();
|
|
TensorCopy(src_tensor, *cpu_place, &dst_tensor);
|
|
|
|
const int* dst_ptr = dst_tensor.data<int>();
|
|
ASSERT_NE(src_ptr, dst_ptr);
|
|
for (size_t i = 0; i < 9; ++i) {
|
|
EXPECT_EQ(src_ptr[i], dst_ptr[i]);
|
|
}
|
|
|
|
EXPECT_TRUE(dst_tensor.layout() == src_tensor.layout());
|
|
|
|
Tensor slice_tensor = src_tensor.Slice(1, 2);
|
|
TensorCopy(slice_tensor, *cpu_place, &dst_tensor);
|
|
const int* slice_ptr = slice_tensor.data<int>();
|
|
dst_ptr = dst_tensor.data<int>();
|
|
ASSERT_NE(dst_ptr, slice_ptr);
|
|
for (size_t i = 0; i < 3; ++i) {
|
|
EXPECT_EQ(dst_ptr[i], slice_ptr[i]);
|
|
}
|
|
EXPECT_TRUE(dst_tensor.layout() == src_tensor.layout());
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
{
|
|
Tensor src_tensor;
|
|
Tensor gpu_tensor;
|
|
Tensor dst_tensor;
|
|
|
|
int* src_ptr =
|
|
src_tensor.mutable_data<int>(make_ddim({3, 3}), platform::CPUPlace());
|
|
|
|
int arr[9] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
|
|
memcpy(src_ptr, arr, 9 * sizeof(int));
|
|
|
|
// CPU Tensor to GPU Tensor
|
|
auto gpu_place = new platform::CUDAPlace(0);
|
|
platform::CUDADeviceContext gpu_ctx(*gpu_place);
|
|
TensorCopy(src_tensor, *gpu_place, gpu_ctx, &gpu_tensor);
|
|
|
|
// GPU Tensor to CPU Tensor
|
|
auto cpu_place = new platform::CPUPlace();
|
|
TensorCopy(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor);
|
|
|
|
// Sync before Compare Tensors
|
|
gpu_ctx.Wait();
|
|
const int* dst_ptr = dst_tensor.data<int>();
|
|
ASSERT_NE(src_ptr, dst_ptr);
|
|
for (size_t i = 0; i < 9; ++i) {
|
|
EXPECT_EQ(src_ptr[i], dst_ptr[i]);
|
|
}
|
|
|
|
Tensor slice_tensor = src_tensor.Slice(1, 2);
|
|
|
|
// CPU Slice Tensor to GPU Tensor
|
|
TensorCopy(slice_tensor, *gpu_place, gpu_ctx, &gpu_tensor);
|
|
|
|
// GPU Tensor to CPU Tensor
|
|
TensorCopy(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor);
|
|
|
|
// Sync before Compare Slice Tensors
|
|
gpu_ctx.Wait();
|
|
const int* slice_ptr = slice_tensor.data<int>();
|
|
dst_ptr = dst_tensor.data<int>();
|
|
ASSERT_NE(dst_ptr, slice_ptr);
|
|
for (size_t i = 0; i < 3; ++i) {
|
|
EXPECT_EQ(dst_ptr[i], slice_ptr[i]);
|
|
}
|
|
|
|
EXPECT_TRUE(dst_tensor.layout() == src_tensor.layout());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
TEST(TensorFromVector, Tensor) {
|
|
{
|
|
std::vector<int> src_vec = {1, 2, 3, 4, 5, 6, 7, 8, 9};
|
|
paddle::framework::Tensor cpu_tensor;
|
|
|
|
// Copy to CPU Tensor
|
|
cpu_tensor.Resize(paddle::framework::make_ddim({3, 3}));
|
|
auto cpu_place = new paddle::platform::CPUPlace();
|
|
paddle::framework::TensorFromVector<int>(src_vec, &cpu_tensor);
|
|
|
|
// Compare Tensors
|
|
const int* cpu_ptr = cpu_tensor.data<int>();
|
|
const int* src_ptr = src_vec.data();
|
|
ASSERT_NE(src_ptr, cpu_ptr);
|
|
for (size_t i = 0; i < 9; ++i) {
|
|
EXPECT_EQ(src_ptr[i], cpu_ptr[i]);
|
|
}
|
|
|
|
src_vec.erase(src_vec.begin(), src_vec.begin() + 5);
|
|
cpu_tensor.Resize(paddle::framework::make_ddim({2, 2}));
|
|
paddle::framework::TensorFromVector<int>(src_vec, &cpu_tensor);
|
|
cpu_ptr = cpu_tensor.data<int>();
|
|
src_ptr = src_vec.data();
|
|
ASSERT_NE(src_ptr, cpu_ptr);
|
|
for (size_t i = 0; i < 5; ++i) {
|
|
EXPECT_EQ(src_ptr[i], cpu_ptr[i]);
|
|
}
|
|
|
|
delete cpu_place;
|
|
}
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
{
|
|
std::vector<int> src_vec = {1, 2, 3, 4, 5, 6, 7, 8, 9};
|
|
paddle::framework::Tensor cpu_tensor;
|
|
paddle::framework::Tensor gpu_tensor;
|
|
paddle::framework::Tensor dst_tensor;
|
|
|
|
// Copy to CPU Tensor
|
|
cpu_tensor.Resize(make_ddim({3, 3}));
|
|
auto cpu_place = new paddle::platform::CPUPlace();
|
|
paddle::platform::CPUDeviceContext cpu_ctx(*cpu_place);
|
|
paddle::framework::TensorFromVector<int>(src_vec, cpu_ctx, &cpu_tensor);
|
|
|
|
// Copy to GPUTensor
|
|
gpu_tensor.Resize(paddle::framework::make_ddim({3, 3}));
|
|
auto gpu_place = new paddle::platform::CUDAPlace();
|
|
paddle::platform::CUDADeviceContext gpu_ctx(*gpu_place);
|
|
paddle::framework::TensorFromVector<int>(src_vec, gpu_ctx, &gpu_tensor);
|
|
// Copy from GPU to CPU tensor for comparison
|
|
paddle::framework::TensorCopy(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor);
|
|
|
|
// Sync before Compare Tensors
|
|
gpu_ctx.Wait();
|
|
const int* src_ptr = src_vec.data();
|
|
const int* cpu_ptr = cpu_tensor.data<int>();
|
|
const int* dst_ptr = dst_tensor.data<int>();
|
|
ASSERT_NE(src_ptr, cpu_ptr);
|
|
ASSERT_NE(src_ptr, dst_ptr);
|
|
for (size_t i = 0; i < 9; ++i) {
|
|
EXPECT_EQ(src_ptr[i], cpu_ptr[i]);
|
|
EXPECT_EQ(src_ptr[i], dst_ptr[i]);
|
|
}
|
|
|
|
src_vec.erase(src_vec.begin(), src_vec.begin() + 5);
|
|
|
|
cpu_tensor.Resize(paddle::framework::make_ddim({2, 2}));
|
|
paddle::framework::TensorFromVector<int>(src_vec, cpu_ctx, &cpu_tensor);
|
|
gpu_tensor.Resize(paddle::framework::make_ddim({2, 2}));
|
|
paddle::framework::TensorFromVector<int>(src_vec, gpu_ctx, &gpu_tensor);
|
|
paddle::framework::TensorCopy(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor);
|
|
|
|
// Sync before Compare Tensors
|
|
gpu_ctx.Wait();
|
|
src_ptr = src_vec.data();
|
|
cpu_ptr = cpu_tensor.data<int>();
|
|
dst_ptr = dst_tensor.data<int>();
|
|
ASSERT_NE(src_ptr, cpu_ptr);
|
|
ASSERT_NE(src_ptr, dst_ptr);
|
|
for (size_t i = 0; i < 5; ++i) {
|
|
EXPECT_EQ(src_ptr[i], cpu_ptr[i]);
|
|
EXPECT_EQ(src_ptr[i], dst_ptr[i]);
|
|
}
|
|
|
|
delete cpu_place;
|
|
delete gpu_place;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
TEST(TensorToVector, Tensor) {
|
|
{
|
|
paddle::framework::Tensor src;
|
|
int* src_ptr = src.mutable_data<int>({3, 3}, paddle::platform::CPUPlace());
|
|
for (int i = 0; i < 3 * 3; ++i) {
|
|
src_ptr[i] = i;
|
|
}
|
|
|
|
paddle::platform::CPUPlace place;
|
|
std::vector<int> dst;
|
|
paddle::framework::TensorToVector<int>(src, &dst);
|
|
|
|
for (int i = 0; i < 3 * 3; ++i) {
|
|
EXPECT_EQ(src_ptr[i], dst[i]);
|
|
}
|
|
}
|
|
#ifdef PADDLE_WITH_CUDA
|
|
{
|
|
std::vector<int> src_vec = {1, 2, 3, 4, 5, 6, 7, 8, 9};
|
|
paddle::framework::Tensor gpu_tensor;
|
|
paddle::platform::CUDAPlace place;
|
|
paddle::platform::CUDADeviceContext gpu_ctx(place);
|
|
paddle::framework::TensorFromVector<int>(src_vec, gpu_ctx, &gpu_tensor);
|
|
|
|
std::vector<int> dst;
|
|
paddle::framework::TensorToVector<int>(gpu_tensor, gpu_ctx, &dst);
|
|
|
|
for (int i = 0; i < 3 * 3; ++i) {
|
|
EXPECT_EQ(src_vec[i], dst[i]);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
TEST(TensorContainsNAN, CPU) {
|
|
{
|
|
paddle::framework::Tensor src;
|
|
float* buf = src.mutable_data<float>({3}, paddle::platform::CPUPlace());
|
|
buf[0] = 0.0;
|
|
buf[1] = NAN;
|
|
buf[2] = 0.0;
|
|
ASSERT_TRUE(paddle::framework::TensorContainsNAN(src));
|
|
buf[1] = 0.0;
|
|
ASSERT_FALSE(paddle::framework::TensorContainsNAN(src));
|
|
}
|
|
|
|
{
|
|
paddle::framework::Tensor src;
|
|
paddle::platform::float16* buf =
|
|
src.mutable_data<paddle::platform::float16>(
|
|
{3}, paddle::platform::CPUPlace());
|
|
buf[0] = 0.0;
|
|
buf[1].x = 0x7fff;
|
|
buf[2] = 0.0;
|
|
ASSERT_TRUE(paddle::framework::TensorContainsNAN(src));
|
|
buf[1] = 0.0;
|
|
ASSERT_FALSE(paddle::framework::TensorContainsNAN(src));
|
|
}
|
|
}
|
|
|
|
TEST(TensorContainsInf, CPU) {
|
|
{
|
|
paddle::framework::Tensor src;
|
|
double* buf = src.mutable_data<double>({3}, paddle::platform::CPUPlace());
|
|
buf[0] = 1.0;
|
|
buf[1] = INFINITY;
|
|
buf[2] = 0.0;
|
|
ASSERT_TRUE(paddle::framework::TensorContainsInf(src));
|
|
buf[1] = 1.0;
|
|
ASSERT_FALSE(paddle::framework::TensorContainsInf(src));
|
|
}
|
|
|
|
{
|
|
paddle::framework::Tensor src;
|
|
paddle::platform::float16* buf =
|
|
src.mutable_data<paddle::platform::float16>(
|
|
{3}, paddle::platform::CPUPlace());
|
|
buf[0] = 1.0;
|
|
buf[1].x = 0x7c00;
|
|
buf[2] = 0.0;
|
|
ASSERT_TRUE(paddle::framework::TensorContainsInf(src));
|
|
buf[1] = 1.0;
|
|
ASSERT_FALSE(paddle::framework::TensorContainsInf(src));
|
|
}
|
|
}
|
|
|
|
TEST(Tensor, FromAndToStream) {
|
|
framework::Tensor src_tensor;
|
|
int array[6] = {1, 2, 3, 4, 5, 6};
|
|
src_tensor.Resize({2, 3});
|
|
int* src_ptr = src_tensor.mutable_data<int>(platform::CPUPlace());
|
|
for (int i = 0; i < 6; ++i) {
|
|
src_ptr[i] = array[i];
|
|
}
|
|
{
|
|
framework::Tensor dst_tensor;
|
|
auto place = new platform::CPUPlace();
|
|
platform::CPUDeviceContext cpu_ctx(*place);
|
|
std::ostringstream oss;
|
|
TensorToStream(oss, src_tensor, cpu_ctx);
|
|
|
|
std::istringstream iss(oss.str());
|
|
TensorFromStream(iss, &dst_tensor, cpu_ctx);
|
|
int* dst_ptr = dst_tensor.mutable_data<int>(platform::CPUPlace());
|
|
for (int i = 0; i < 5; ++i) {
|
|
ASSERT_EQ(dst_ptr[i], array[i]);
|
|
}
|
|
ASSERT_EQ(dst_tensor.dims(), src_tensor.dims());
|
|
delete place;
|
|
}
|
|
#ifdef PADDLE_WITH_CUDA
|
|
{
|
|
Tensor gpu_tensor;
|
|
gpu_tensor.Resize({2, 3});
|
|
Tensor dst_tensor;
|
|
|
|
auto gpu_place = new platform::CUDAPlace();
|
|
platform::CUDADeviceContext gpu_ctx(*gpu_place);
|
|
|
|
TensorCopy(src_tensor, *gpu_place, gpu_ctx, &gpu_tensor);
|
|
|
|
std::ostringstream oss;
|
|
TensorToStream(oss, gpu_tensor, gpu_ctx);
|
|
|
|
std::istringstream iss(oss.str());
|
|
TensorFromStream(iss, &dst_tensor, gpu_ctx);
|
|
|
|
int* dst_ptr = dst_tensor.mutable_data<int>(platform::CPUPlace());
|
|
for (int i = 0; i < 6; ++i) {
|
|
ASSERT_EQ(dst_ptr[i], array[i]);
|
|
}
|
|
delete gpu_place;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
} // namespace framework
|
|
} // namespace paddle
|