You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							155 lines
						
					
					
						
							5.9 KiB
						
					
					
				
			
		
		
	
	
							155 lines
						
					
					
						
							5.9 KiB
						
					
					
				/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
  http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include "paddle/fluid/operators/fc_op.h"
 | 
						|
#include <vector>
 | 
						|
#include "paddle/fluid/operators/math/blas.h"
 | 
						|
#include "paddle/fluid/operators/math/fc_compute.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
void FCOp::InferShape(framework::InferShapeContext* ctx) const {
 | 
						|
  PADDLE_ENFORCE(ctx->HasInput("Input"),
 | 
						|
                 "X(Input) of Fully Connected should not be null.");
 | 
						|
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
 | 
						|
                 "Out(Output) of Fully Connected should not be null.");
 | 
						|
  PADDLE_ENFORCE(ctx->HasInput("W"),
 | 
						|
                 "W(Input) of Fully Connected should not be null.");
 | 
						|
  // NCHW
 | 
						|
  auto in_dims = ctx->GetInputDim("Input");
 | 
						|
  // IO, I=C*H*W
 | 
						|
  auto w_dims = ctx->GetInputDim("W");
 | 
						|
  std::vector<int64_t> output_shape({in_dims[0], w_dims[1]});
 | 
						|
 | 
						|
  if (ctx->HasInput("Bias")) {
 | 
						|
    auto bias_dims = ctx->GetInputDim("Bias");
 | 
						|
    if (bias_dims.size() == 2) {
 | 
						|
      PADDLE_ENFORCE_EQ(bias_dims[0], 1, "The shape of Bias must be [1, dim].");
 | 
						|
      PADDLE_ENFORCE_EQ(bias_dims[1], w_dims[1],
 | 
						|
                        "The shape of Bias must be [1, dim].");
 | 
						|
    } else if (bias_dims.size() == 1) {
 | 
						|
      PADDLE_ENFORCE_EQ(bias_dims[0], w_dims[1],
 | 
						|
                        "The shape of Bias must be [1, dim].");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  PADDLE_ENFORCE(in_dims.size() == 2 || in_dims.size() == 4,
 | 
						|
                 "Fully Connected input should be 2-D or 4-D tensor.");
 | 
						|
  PADDLE_ENFORCE_EQ(w_dims.size(), 2UL,
 | 
						|
                    "Fully Connected input should be 2-D tensor.");
 | 
						|
  PADDLE_ENFORCE_EQ(framework::product(in_dims) / in_dims[0], w_dims[0],
 | 
						|
                    "Fully Connected input and weigth size do not match.");
 | 
						|
 | 
						|
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
 | 
						|
  ctx->ShareLoD("Input", "Out");
 | 
						|
}
 | 
						|
 | 
						|
framework::OpKernelType FCOp::GetExpectedKernelType(
 | 
						|
    const framework::ExecutionContext& ctx) const {
 | 
						|
  framework::LibraryType library = framework::LibraryType::kPlain;
 | 
						|
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
 | 
						|
  if (ctx.Attr<bool>("use_mkldnn")) {
 | 
						|
    library = framework::LibraryType::kMKLDNN;
 | 
						|
    layout = framework::DataLayout::kMKLDNN;
 | 
						|
  }
 | 
						|
  return framework::OpKernelType(
 | 
						|
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
 | 
						|
      layout, library);
 | 
						|
}
 | 
						|
 | 
						|
void FCOpGrad::InferShape(framework::InferShapeContext* ctx) const {
 | 
						|
  auto in_dims = ctx->GetInputDim("Input");
 | 
						|
  auto w_dims = ctx->GetInputDim("W");
 | 
						|
 | 
						|
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
 | 
						|
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
 | 
						|
  }
 | 
						|
  if (ctx->HasOutput(framework::GradVarName("W"))) {
 | 
						|
    ctx->SetOutputDim(framework::GradVarName("W"), w_dims);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ctx->HasInput("Bias")) {
 | 
						|
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")),
 | 
						|
                   "Should have bias grad");
 | 
						|
    auto bias_dims = ctx->GetInputDim("Bias");
 | 
						|
    ctx->SetOutputDim(framework::GradVarName("Bias"), bias_dims);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
framework::OpKernelType FCOpGrad::GetExpectedKernelType(
 | 
						|
    const framework::ExecutionContext& ctx) const {
 | 
						|
  framework::LibraryType library = framework::LibraryType::kPlain;
 | 
						|
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
 | 
						|
  if (ctx.Attr<bool>("use_mkldnn")) {
 | 
						|
    library = framework::LibraryType::kMKLDNN;
 | 
						|
    layout = framework::DataLayout::kMKLDNN;
 | 
						|
  }
 | 
						|
  return framework::OpKernelType(
 | 
						|
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
 | 
						|
      layout, library);
 | 
						|
}
 | 
						|
 | 
						|
void FCOpMaker::Make() {
 | 
						|
  AddInput("Input",
 | 
						|
           "(Tensor), The input tensor of fully connected operator with format "
 | 
						|
           "(NCHW). ");
 | 
						|
  AddInput("W", "(Tensor), The weight fc op with shape (I, O).");
 | 
						|
  AddInput("Bias", "(Tensor, optional) Bias vector with shape (1 x O")
 | 
						|
      .AsDispensable();
 | 
						|
  AddOutput("Out", "(Tensor) The output tensor of fully connected operator. ");
 | 
						|
  AddAttr<bool>("use_mkldnn",
 | 
						|
                "(bool, default false) Only used in mkldnn kernel")
 | 
						|
      .SetDefault(false);
 | 
						|
  AddComment(R"DOC(
 | 
						|
  Fully Connected Operator.
 | 
						|
 | 
						|
  The fully connected operation calculates the output based on the input, weights and bias.
 | 
						|
  The size of each dimension of the parameters checked in the infer-shape.
 | 
						|
)DOC");
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class FCOpKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
 | 
						|
    PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
 | 
						|
                   "It must use CPUPlace.");
 | 
						|
    auto input = ctx.Input<Tensor>("Input");
 | 
						|
    auto w = ctx.Input<Tensor>("W");
 | 
						|
    auto bias = ctx.Input<Tensor>("Bias");
 | 
						|
    auto output = ctx.Output<Tensor>("Out");
 | 
						|
    auto in_dims = input->dims();
 | 
						|
    auto w_dims = w->dims();
 | 
						|
 | 
						|
    const T* input_data = input->data<T>();
 | 
						|
    const T* w_data = w->data<T>();
 | 
						|
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
 | 
						|
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
 | 
						|
    math::FCCompute<platform::CPUDeviceContext, T>(
 | 
						|
        blas, in_dims[0], w_dims[1], w_dims[0], input_data, w_data, output_data,
 | 
						|
        bias ? bias->data<T>() : NULL);
 | 
						|
 | 
						|
    // TODO(TJ): fuse act
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
namespace ops = paddle::operators;
 | 
						|
REGISTER_OPERATOR(fc, ops::FCOp, ops::FCOpMaker,
 | 
						|
                  paddle::framework::DefaultGradOpDescMaker<true>);
 | 
						|
REGISTER_OPERATOR(fc_grad, ops::FCOpGrad);
 | 
						|
REGISTER_OP_CPU_KERNEL(fc, ops::FCOpKernel<float>, ops::FCOpKernel<double>);
 |