You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							238 lines
						
					
					
						
							10 KiB
						
					
					
				
			
		
		
	
	
							238 lines
						
					
					
						
							10 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include "paddle/fluid/framework/eigen.h"
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
#include "paddle/fluid/operators/activation_op.h"
 | 
						|
#include "paddle/fluid/operators/math/blas.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
using Tensor = framework::Tensor;
 | 
						|
template <typename T, int MajorType = Eigen::RowMajor,
 | 
						|
          typename IndexType = Eigen::DenseIndex>
 | 
						|
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
 | 
						|
 | 
						|
template <typename T, int MajorType = Eigen::RowMajor,
 | 
						|
          typename IndexType = Eigen::DenseIndex>
 | 
						|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
 | 
						|
 | 
						|
enum GRUActivationType { identity = 0, sigmoid = 1, tanh = 2, relu = 3 };
 | 
						|
 | 
						|
template <typename DeviceContext, typename T>
 | 
						|
class GRUUnitKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  template <typename Device, typename X, typename Y>
 | 
						|
  void ActCompute(const int act_type, const Device& d, X x, Y y) const {
 | 
						|
    if (act_type == identity)
 | 
						|
      y.device(d) = x;
 | 
						|
    else if (act_type == sigmoid)
 | 
						|
      SigmoidFunctor<T>()(d, x, y);
 | 
						|
    else if (act_type == tanh)
 | 
						|
      TanhFunctor<T>()(d, x, y);
 | 
						|
    else if (act_type == relu)
 | 
						|
      ReluFunctor<T>()(d, x, y);
 | 
						|
    else
 | 
						|
      PADDLE_THROW("unsupported activation type");
 | 
						|
  }
 | 
						|
 | 
						|
  void Compute(const framework::ExecutionContext& context) const override {
 | 
						|
    auto* input = context.Input<Tensor>("Input");
 | 
						|
    auto* hidden_prev = context.Input<Tensor>("HiddenPrev");
 | 
						|
    auto* weight = context.Input<Tensor>("Weight");
 | 
						|
    auto* bias = context.Input<Tensor>("Bias");
 | 
						|
    auto* gate = context.Output<Tensor>("Gate");
 | 
						|
    gate->mutable_data<T>(context.GetPlace());
 | 
						|
    auto* reset_hidden_prev = context.Output<Tensor>("ResetHiddenPrev");
 | 
						|
    reset_hidden_prev->mutable_data<T>(context.GetPlace());
 | 
						|
    auto* hidden = context.Output<Tensor>("Hidden");
 | 
						|
    hidden->mutable_data<T>(context.GetPlace());
 | 
						|
 | 
						|
    int batch_size = input->dims()[0];
 | 
						|
    int frame_size = hidden_prev->dims()[1];
 | 
						|
 | 
						|
    auto x = EigenMatrix<T>::From(*input);
 | 
						|
    auto h_p = EigenMatrix<T>::From(*hidden_prev);
 | 
						|
    auto g = EigenMatrix<T>::From(*gate);
 | 
						|
    auto r_h_p = EigenMatrix<T>::From(*reset_hidden_prev);
 | 
						|
    auto h = EigenMatrix<T>::From(*hidden);
 | 
						|
    auto& place =
 | 
						|
        *context.template device_context<DeviceContext>().eigen_device();
 | 
						|
 | 
						|
    // calculate unactivated gate outputs
 | 
						|
    if (bias) {
 | 
						|
      auto b = EigenMatrix<T>::From(*bias);
 | 
						|
      g.device(place) = x +
 | 
						|
                        b.reshape(Eigen::array<int, 2>({{1, frame_size * 3}}))
 | 
						|
                            .broadcast(Eigen::array<int, 2>({{batch_size, 1}}));
 | 
						|
    } else {
 | 
						|
      g.device(place) = x;
 | 
						|
    }
 | 
						|
    const T* hidden_prev_data = hidden_prev->data<T>();
 | 
						|
    const T* weight_data = weight->data<T>();
 | 
						|
    T* gate_data = gate->data<T>();
 | 
						|
    T* reset_hidden_prev_data = reset_hidden_prev->data<T>();
 | 
						|
    auto blas = math::GetBlas<DeviceContext, T>(context);
 | 
						|
    blas.GEMM(false, false, batch_size, 2 * frame_size, frame_size, 1,
 | 
						|
              hidden_prev_data, frame_size, weight_data, frame_size * 2, 1,
 | 
						|
              gate_data, frame_size * 3);
 | 
						|
 | 
						|
    // calculate activited gate
 | 
						|
    Eigen::array<int, 2> extents{{batch_size, frame_size}};
 | 
						|
    Eigen::array<int, 2> u_offsets{{0, 0}};
 | 
						|
    ActCompute(context.Attr<int>("gate_activation"), place,
 | 
						|
               g.slice(u_offsets, extents), g.slice(u_offsets, extents));
 | 
						|
    auto u = g.slice(u_offsets, extents);  // update gate
 | 
						|
    Eigen::array<int, 2> r_offsets{{0, frame_size}};
 | 
						|
    ActCompute(context.Attr<int>("gate_activation"), place,
 | 
						|
               g.slice(r_offsets, extents), g.slice(r_offsets, extents));
 | 
						|
    auto r = g.slice(r_offsets, extents);  // reset gate
 | 
						|
    r_h_p.device(place) = r * h_p;         // reset previous hidden state
 | 
						|
    blas.GEMM(false, false, batch_size, frame_size, frame_size, 1,
 | 
						|
              reset_hidden_prev_data, frame_size,
 | 
						|
              weight_data + frame_size * frame_size * 2, frame_size, 1,
 | 
						|
              gate_data + frame_size * 2, frame_size * 3);
 | 
						|
 | 
						|
    Eigen::array<int, 2> c_offsets{{0, frame_size * 2}};
 | 
						|
    ActCompute(context.Attr<int>("activation"), place,
 | 
						|
               g.slice(c_offsets, extents), g.slice(c_offsets, extents));
 | 
						|
    auto c = g.slice(c_offsets, extents);  // output candidate
 | 
						|
 | 
						|
    // calculate final output
 | 
						|
    h.device(place) = u * (c - h_p) + h_p;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename DeviceContext, typename T>
 | 
						|
class GRUUnitGradKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  template <typename Device, typename X, typename Y, typename DX, typename DY>
 | 
						|
  void ActGradCompute(const int act_type, const Device& d, X x, Y y, DX dx,
 | 
						|
                      DY dy) const {
 | 
						|
    // x is dummy and won't be used even in Relu(use y instead)
 | 
						|
    if (act_type == identity)
 | 
						|
      dx.device(d) = dy;
 | 
						|
    else if (act_type == sigmoid)
 | 
						|
      SigmoidGradFunctor<T>()(d, x, y, dy, dx);
 | 
						|
    else if (act_type == tanh)
 | 
						|
      TanhGradFunctor<T>()(d, x, y, dy, dx);
 | 
						|
    else if (act_type == relu)
 | 
						|
      ReluGradFunctor<T>()(d, x, y, dy, dx);
 | 
						|
    else
 | 
						|
      PADDLE_THROW("unsupported activation type");
 | 
						|
  }
 | 
						|
 | 
						|
  void Compute(const framework::ExecutionContext& context) const override {
 | 
						|
    auto* input = context.Input<Tensor>("Input");
 | 
						|
    auto* hidden_prev = context.Input<Tensor>("HiddenPrev");
 | 
						|
    auto* weight = context.Input<Tensor>("Weight");
 | 
						|
    auto* gate = context.Input<Tensor>("Gate");
 | 
						|
    auto* reset_hidden_prev = context.Input<Tensor>("ResetHiddenPrev");
 | 
						|
    auto* hidden_grad = context.Input<Tensor>(framework::GradVarName("Hidden"));
 | 
						|
    auto* input_grad = context.Output<Tensor>(framework::GradVarName("Input"));
 | 
						|
    auto* hidden_prev_grad =
 | 
						|
        context.Output<Tensor>(framework::GradVarName("HiddenPrev"));
 | 
						|
    auto* weight_grad =
 | 
						|
        context.Output<Tensor>(framework::GradVarName("Weight"));
 | 
						|
    auto* bias_grad = context.Output<Tensor>(framework::GradVarName("Bias"));
 | 
						|
    Tensor gate_grad;
 | 
						|
    Tensor reset_hidden_prev_grad;
 | 
						|
 | 
						|
    const T* hidden_prev_data = hidden_prev->data<T>();
 | 
						|
    const T* weight_data = weight->data<T>();
 | 
						|
    T* gate_grad_data =
 | 
						|
        gate_grad.mutable_data<T>(input->dims(), context.GetPlace());
 | 
						|
    const T* reset_hidden_prev_data = reset_hidden_prev->data<T>();
 | 
						|
    T* reset_hidden_prev_grad_data = reset_hidden_prev_grad.mutable_data<T>(
 | 
						|
        reset_hidden_prev->dims(), context.GetPlace());
 | 
						|
 | 
						|
    auto h_p = EigenMatrix<T>::From(*hidden_prev);
 | 
						|
    auto g = EigenMatrix<T>::From(*gate);
 | 
						|
    auto d_h = EigenMatrix<T>::From(*hidden_grad);
 | 
						|
    auto d_g = EigenMatrix<T>::From(gate_grad);
 | 
						|
    auto d_r_h_p = EigenMatrix<T>::From(reset_hidden_prev_grad);
 | 
						|
    auto& place =
 | 
						|
        *context.template device_context<DeviceContext>().eigen_device();
 | 
						|
 | 
						|
    int batch_size = input->dims()[0];
 | 
						|
    int frame_size = hidden_prev->dims()[1];
 | 
						|
 | 
						|
    Eigen::array<int, 2> extents{{batch_size, frame_size}};
 | 
						|
    Eigen::array<int, 2> u_offsets{{0, 0}};
 | 
						|
    auto u = g.slice(u_offsets, extents);  // update gate
 | 
						|
    Eigen::array<int, 2> r_offsets{{0, frame_size}};
 | 
						|
    auto r = g.slice(r_offsets, extents);  // reset gate
 | 
						|
    Eigen::array<int, 2> c_offsets{{0, frame_size * 2}};
 | 
						|
    auto c = g.slice(c_offsets, extents);  // output candidate
 | 
						|
 | 
						|
    // backward for unactivated update gate
 | 
						|
    ActGradCompute(context.Attr<int>("gate_activation"), place, u, u,
 | 
						|
                   d_g.slice(u_offsets, extents), d_h * (c - h_p));
 | 
						|
    // backward for unactivated output candidate
 | 
						|
    ActGradCompute(context.Attr<int>("activation"), place, c, c,
 | 
						|
                   d_g.slice(c_offsets, extents), d_h * u);
 | 
						|
    // backward for reset_hidden_prev
 | 
						|
    auto blas = math::GetBlas<DeviceContext, T>(context);
 | 
						|
    blas.GEMM(false, true, batch_size, frame_size, frame_size, 1,
 | 
						|
              gate_grad_data + frame_size * 2, frame_size * 3,
 | 
						|
              weight_data + frame_size * frame_size * 2, frame_size, 0,
 | 
						|
              reset_hidden_prev_grad_data, frame_size);
 | 
						|
    // backward for unactivated reset gate
 | 
						|
    ActGradCompute(context.Attr<int>("gate_activation"), place, r, r,
 | 
						|
                   d_g.slice(r_offsets, extents), d_r_h_p * h_p);
 | 
						|
    // backward for weight
 | 
						|
    if (weight_grad) {
 | 
						|
      T* weight_grad_data = weight_grad->mutable_data<T>(context.GetPlace());
 | 
						|
      // backward for state_weight
 | 
						|
      blas.GEMM(true, false, frame_size, frame_size, batch_size, 1,
 | 
						|
                reset_hidden_prev_data, frame_size,
 | 
						|
                gate_grad_data + frame_size * 2, frame_size * 3, 0,
 | 
						|
                weight_grad_data + frame_size * frame_size * 2, frame_size);
 | 
						|
 | 
						|
      // backward for update_gate_weight and reset_gate_weight
 | 
						|
      blas.GEMM(true, false, frame_size, frame_size * 2, batch_size, 1,
 | 
						|
                hidden_prev_data, frame_size, gate_grad_data, frame_size * 3, 0,
 | 
						|
                weight_grad_data, frame_size * 2);
 | 
						|
    }
 | 
						|
    // backward for hidden_prev
 | 
						|
    if (hidden_prev_grad) {
 | 
						|
      T* hidden_prev_grad_data =
 | 
						|
          hidden_prev_grad->mutable_data<T>(context.GetPlace());
 | 
						|
      auto d_h_p = EigenMatrix<T>::From(*hidden_prev_grad);
 | 
						|
      d_h_p.device(place) = d_r_h_p * r + d_h * (u.constant(T(1)) - u);
 | 
						|
      blas.GEMM(false, true, batch_size, frame_size, frame_size * 2, 1,
 | 
						|
                gate_grad_data, frame_size * 3, weight_data, frame_size * 2, 1,
 | 
						|
                hidden_prev_grad_data, frame_size);
 | 
						|
    }
 | 
						|
    // backward for input
 | 
						|
    if (input_grad) {
 | 
						|
      input_grad->mutable_data<T>(context.GetPlace());
 | 
						|
      auto d_x = EigenMatrix<T>::From(*input_grad);
 | 
						|
      d_x.device(place) = d_g;
 | 
						|
    }
 | 
						|
    // backward for bias
 | 
						|
    if (bias_grad) {
 | 
						|
      bias_grad->mutable_data<T>(context.GetPlace());
 | 
						|
      auto d_b = EigenVector<T>::Flatten(*bias_grad);
 | 
						|
      d_b.device(place) = d_g.sum(Eigen::array<int, 1>({{0}}));
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 |