You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							116 lines
						
					
					
						
							4.4 KiB
						
					
					
				
			
		
		
	
	
							116 lines
						
					
					
						
							4.4 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include "paddle/fluid/operators/log_loss_op.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
class LogLossOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext* ctx) const override {
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("Predicted"),
 | 
						|
                   "Input(Predicted) must be initialized.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("Labels"),
 | 
						|
                   "Input(Labels) must be initialized.");
 | 
						|
 | 
						|
    auto pred_dims = ctx->GetInputDim("Predicted");
 | 
						|
    auto label_dims = ctx->GetInputDim("Labels");
 | 
						|
 | 
						|
    PADDLE_ENFORCE_EQ(pred_dims, label_dims);
 | 
						|
    PADDLE_ENFORCE_EQ(pred_dims.size(), 2,
 | 
						|
                      "The rank of Input(Predicted) must be 2 and the shape is "
 | 
						|
                      "[batch_size, 1].");
 | 
						|
    PADDLE_ENFORCE_EQ(pred_dims[1], 1,
 | 
						|
                      "Each row of Input(Predicted) contains a real value, "
 | 
						|
                      "so the 2nd dimension of Input(X) must be 1.");
 | 
						|
 | 
						|
    ctx->SetOutputDim("Loss", {pred_dims[0], 1});
 | 
						|
    ctx->ShareLoD("Predicted", "Loss");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename AttrType>
 | 
						|
class LogLossOpMaker : public framework::OpProtoAndCheckerMaker {
 | 
						|
 public:
 | 
						|
  void Make() override {
 | 
						|
    AddInput("Predicted",
 | 
						|
             "The input value (Predicted) of Log loss op."
 | 
						|
             "Predicted is a 2-D tensor with shape [batch_size, 1].");
 | 
						|
    AddInput("Labels",
 | 
						|
             "The target value (Labels) of Log loss op."
 | 
						|
             "Labels is a 2-D tensor with shape [batch_size, 1].");
 | 
						|
    AddOutput("Loss",
 | 
						|
              "The output tensor with shape [batch_size, 1] "
 | 
						|
              "which represents the log loss.");
 | 
						|
    AddAttr<AttrType>("epsilon", "Epsilon in log loss.");
 | 
						|
    AddComment(R"DOC(
 | 
						|
LogLoss Operator.
 | 
						|
 | 
						|
Log loss is a loss function used for binary classification. Log Loss quantifies
 | 
						|
the accuracy of a classifier by penalising false classifications. Minimising the
 | 
						|
Log Loss is equivalent to maximising the accuracy of the classifier. We define
 | 
						|
Predicted as the values predicted by our model and Labels as the target ground
 | 
						|
truth value. Log loss can evaluate how close the predicted values are to the
 | 
						|
target. The shapes of Predicted and Labels are both [batch_size, 1].
 | 
						|
The equation is:
 | 
						|
 | 
						|
$$
 | 
						|
Loss = - Labels * log(Predicted + \epsilon) -
 | 
						|
        (1 - Labels) * log(1 - Predicted + \epsilon)
 | 
						|
$$
 | 
						|
 | 
						|
)DOC");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class LogLossGradOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						|
 | 
						|
  void InferShape(framework::InferShapeContext* ctx) const override {
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("Predicted"),
 | 
						|
                   "Input(Predicted) should not be null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("Labels"),
 | 
						|
                   "Input(Labels) should not be null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
 | 
						|
                   "Input(Loss@GRAD) should not be null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Predicted")),
 | 
						|
                   "Output(Predicted@GRAD) should not be null.");
 | 
						|
 | 
						|
    auto pred_dims = ctx->GetInputDim("Predicted");
 | 
						|
    auto label_dims = ctx->GetInputDim("Labels");
 | 
						|
    auto loss_grad_dims = ctx->GetInputDim(framework::GradVarName("Loss"));
 | 
						|
    PADDLE_ENFORCE_EQ(loss_grad_dims, pred_dims);
 | 
						|
 | 
						|
    auto pred_grad_name = framework::GradVarName("Predicted");
 | 
						|
    ctx->SetOutputDim(pred_grad_name, pred_dims);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
namespace ops = paddle::operators;
 | 
						|
REGISTER_OPERATOR(log_loss, ops::LogLossOp, ops::LogLossOpMaker<float>,
 | 
						|
                  paddle::framework::DefaultGradOpDescMaker<true>);
 | 
						|
REGISTER_OPERATOR(log_loss_grad, ops::LogLossGradOp);
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    log_loss, ops::LogLossKernel<paddle::platform::CPUDeviceContext, float>);
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    log_loss_grad,
 | 
						|
    ops::LogLossGradKernel<paddle::platform::CPUDeviceContext, float>);
 |