You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							307 lines
						
					
					
						
							11 KiB
						
					
					
				
			
		
		
	
	
							307 lines
						
					
					
						
							11 KiB
						
					
					
				/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
class SqueezeOpInferShape : public framework::InferShapeBase {
 | 
						|
 public:
 | 
						|
  void operator()(framework::InferShapeContext *ctx) const override {
 | 
						|
    PADDLE_ENFORCE(ctx->HasInput("X"),
 | 
						|
                   "Input(X) of Squeeze operator should not be null.");
 | 
						|
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
 | 
						|
                   "Output(Out) of Squeeze operator should not be null.");
 | 
						|
 | 
						|
    const auto &x_dims = ctx->GetInputDim("X");
 | 
						|
    // Check input tensor dims (<6) Eigen limit.
 | 
						|
    PADDLE_ENFORCE(x_dims.size() <= 6,
 | 
						|
                   "Invalid dimnesions, the rank of Input(X) "
 | 
						|
                   "should be in the range of [1, 6] (Eigen limit).");
 | 
						|
 | 
						|
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
 | 
						|
    for (int a : axes) {
 | 
						|
      PADDLE_ENFORCE_LT(a, x_dims.size(),
 | 
						|
                        "The squeeze axis should be less than input "
 | 
						|
                        "tensor's rank.");
 | 
						|
    }
 | 
						|
 | 
						|
    auto out_dims = GetOutputShape(axes, x_dims);
 | 
						|
    ctx->SetOutputDim("Out", out_dims);
 | 
						|
    if (x_dims[0] == out_dims[0]) {
 | 
						|
      // Only pass LoD when the first dimension of output and Input(X)
 | 
						|
      // are the same.
 | 
						|
      ctx->ShareLoD("X", "Out");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  static framework::DDim GetOutputShape(const std::vector<int> squeeze_dims,
 | 
						|
                                        const framework::DDim &in_dims) {
 | 
						|
    size_t num_squeeze_dims = squeeze_dims.size();
 | 
						|
    int cnt_squeezed_dims = 0;
 | 
						|
    bool should_squeeze[9] = {false};
 | 
						|
 | 
						|
    // Determines number of dimensions of output tensor after squeeze.
 | 
						|
    // Mark and count the dimensions need to be squeezed
 | 
						|
    if (num_squeeze_dims == 0) {
 | 
						|
      for (int idx = 0; idx < in_dims.size(); ++idx) {
 | 
						|
        if (in_dims[idx] == 1) {
 | 
						|
          should_squeeze[idx] = true;
 | 
						|
          ++cnt_squeezed_dims;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      for (size_t idx = 0; idx < num_squeeze_dims; ++idx) {
 | 
						|
        int current = squeeze_dims[idx] < 0 ? squeeze_dims[idx] + in_dims.size()
 | 
						|
                                            : squeeze_dims[idx];
 | 
						|
        // Check current index, the upper limit has beed checked in line 36.
 | 
						|
        PADDLE_ENFORCE(current >= 0,
 | 
						|
                       "Invalid axis, the negative axis is out of range.");
 | 
						|
        PADDLE_ENFORCE(in_dims[current] == 1,
 | 
						|
                       "Invalid axis index, the axis that will be squeezed "
 | 
						|
                       "should be equal to 1.");
 | 
						|
 | 
						|
        if (!(should_squeeze[current])) {
 | 
						|
          ++cnt_squeezed_dims;
 | 
						|
        }
 | 
						|
        should_squeeze[current] = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Make output dimensions
 | 
						|
    std::vector<int64_t> output_shape(in_dims.size() - cnt_squeezed_dims, 0);
 | 
						|
    for (int in_idx = 0, out_idx = 0; in_idx < in_dims.size(); ++in_idx) {
 | 
						|
      if (!should_squeeze[in_idx]) {
 | 
						|
        output_shape[out_idx++] = in_dims[in_idx];
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return framework::make_ddim(output_shape);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class SqueezeOp : public framework::OperatorBase {
 | 
						|
 public:
 | 
						|
  using OperatorBase::OperatorBase;
 | 
						|
 | 
						|
 private:
 | 
						|
  void RunImpl(const framework::Scope &scope,
 | 
						|
               const platform::Place &place) const override {
 | 
						|
    auto &axes = Attr<std::vector<int>>("axes");
 | 
						|
    auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
 | 
						|
    auto out_dims = SqueezeOpInferShape::GetOutputShape(axes, x_dims);
 | 
						|
 | 
						|
    framework::AttributeMap attrs;
 | 
						|
    attrs["shape"] = framework::vectorize2int(out_dims);
 | 
						|
    // Invoke Reshape Op
 | 
						|
    auto reshape_op = framework::OpRegistry::CreateOp(
 | 
						|
        "reshape", {{"X", {Input("X")}}, {"Shape", {}}},
 | 
						|
        {{"Out", {Output("Out")}}}, attrs);
 | 
						|
    reshape_op->Run(scope, place);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 | 
						|
 public:
 | 
						|
  void Make() override {
 | 
						|
    AddInput("X", "(Tensor). The input tensor of squeeze operator.");
 | 
						|
    AddOutput("Out", "(Tensor). The output tensor of squeeze operator.");
 | 
						|
    AddAttr<std::vector<int>>("axes",
 | 
						|
                              "(std::vector<int>). List of integers,"
 | 
						|
                              " indicating the dimensions to squeeze.")
 | 
						|
        .SetDefault({});
 | 
						|
    AddComment(R"DOC(
 | 
						|
        Squeeze Operator.
 | 
						|
 | 
						|
        Remove single-dimensional entries from the shape of a tensor.
 | 
						|
        Takes a parameter axes with a list of axes to squeeze.
 | 
						|
        If axes is not provided, all the single dimensions will be removed from the shape.
 | 
						|
        If an axis is selected with shape entry not equal to one, an error is raised.
 | 
						|
 | 
						|
        Examples:
 | 
						|
        Case 1:
 | 
						|
          Given
 | 
						|
            X.shape = (1, 3, 1, 5)
 | 
						|
          and
 | 
						|
            axes = [0]
 | 
						|
          we get:
 | 
						|
            Out.shape = (3, 1, 5)
 | 
						|
 | 
						|
        Case 2:
 | 
						|
          Given
 | 
						|
            X.shape = (1, 3, 1, 5)
 | 
						|
          and
 | 
						|
            axes = []
 | 
						|
          we get:
 | 
						|
            Out.shape = (3, 5)
 | 
						|
    )DOC");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class SqueezeGradInferShape : public framework::InferShapeBase {
 | 
						|
 public:
 | 
						|
  void operator()(framework::InferShapeContext *context) const override {
 | 
						|
    context->SetOutputDim(framework::GradVarName("X"),
 | 
						|
                          context->GetInputDim("X"));
 | 
						|
    context->ShareLoD("X", framework::GradVarName("X"));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class SqueezeGradOp : public framework::OperatorBase {
 | 
						|
 public:
 | 
						|
  using OperatorBase::OperatorBase;
 | 
						|
 | 
						|
 private:
 | 
						|
  void RunImpl(const framework::Scope &scope,
 | 
						|
               const platform::Place &place) const override {
 | 
						|
    auto dx_name = Output(framework::GradVarName("X"));
 | 
						|
    auto dout_name = Input(framework::GradVarName("Out"));
 | 
						|
    auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
 | 
						|
    framework::AttributeMap attrs;
 | 
						|
    attrs["shape"] = framework::vectorize2int(x_dims);
 | 
						|
 | 
						|
    auto reshape_op = framework::OpRegistry::CreateOp(
 | 
						|
        "reshape", {{"X", {dout_name}}, {"Shape", {}}}, {{"Out", {dx_name}}},
 | 
						|
        attrs);
 | 
						|
    reshape_op->Run(scope, place);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// FIXME(zcd): squeeze2 adds an intermediate output(XShape) based on squeeze,
 | 
						|
// the XShape is used to carry the shape and lod of X which will be used in
 | 
						|
// squeeze_grad, in this way, the framework can reuse the memory of X
 | 
						|
// immediately the squeeze2_op is finished.
 | 
						|
// Considering compatibility issues, we could not fix squeeze2_op
 | 
						|
class Squeeze2OpMaker : public SqueezeOpMaker {
 | 
						|
 public:
 | 
						|
  void Make() override {
 | 
						|
    SqueezeOpMaker::Make();
 | 
						|
    AddOutput("XShape",
 | 
						|
              "XShape is just used to store the shape and lod of X, which will "
 | 
						|
              "be used in SqueezeGradOp.")
 | 
						|
        .AsIntermediate();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class Squeeze2OpInferShape : public SqueezeOpInferShape {
 | 
						|
 public:
 | 
						|
  void operator()(framework::InferShapeContext *ctx) const override {
 | 
						|
    SqueezeOpInferShape::operator()(ctx);
 | 
						|
    PADDLE_ENFORCE(ctx->HasOutput("XShape"),
 | 
						|
                   "Output(XShape) of Squeeze operator should not be null.");
 | 
						|
    const auto &x_dims = ctx->GetInputDim("X");
 | 
						|
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
 | 
						|
    xshape_dims[0] = 0;
 | 
						|
    for (int i = 0; i < x_dims.size(); ++i) {
 | 
						|
      xshape_dims[i + 1] = x_dims[i];
 | 
						|
    }
 | 
						|
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
 | 
						|
    ctx->ShareLoD("X", /*->*/ "XShape");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class Squeeze2Op : public framework::OperatorBase {
 | 
						|
 public:
 | 
						|
  using OperatorBase::OperatorBase;
 | 
						|
 | 
						|
 private:
 | 
						|
  void RunImpl(const framework::Scope &scope,
 | 
						|
               const platform::Place &place) const override {
 | 
						|
    auto &axes = Attr<std::vector<int>>("axes");
 | 
						|
    auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
 | 
						|
    auto out_dims = Squeeze2OpInferShape::GetOutputShape(axes, x_dims);
 | 
						|
 | 
						|
    framework::AttributeMap attrs;
 | 
						|
    attrs["shape"] = framework::vectorize2int(out_dims);
 | 
						|
    // Invoke Reshape Op
 | 
						|
    auto reshape_op = framework::OpRegistry::CreateOp(
 | 
						|
        "reshape2", {{"X", {Input("X")}}, {"Shape", {}}},
 | 
						|
        {{"Out", {Output("Out")}}, {"XShape", {Output("XShape")}}}, attrs);
 | 
						|
    reshape_op->Run(scope, place);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class Squeeze2GradOpMaker : public framework::SingleGradOpDescMaker {
 | 
						|
 public:
 | 
						|
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
 | 
						|
 | 
						|
  std::unique_ptr<framework::OpDesc> Apply() const override {
 | 
						|
    auto *grad_op = new framework::OpDesc();
 | 
						|
    grad_op->SetType("squeeze2_grad");
 | 
						|
    grad_op->SetInput("XShape", Output("XShape"));
 | 
						|
    grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
 | 
						|
    grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
 | 
						|
    grad_op->SetAttrMap(Attrs());
 | 
						|
    return std::unique_ptr<framework::OpDesc>(grad_op);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class Squeeze2GradInferShape : public framework::InferShapeBase {
 | 
						|
 public:
 | 
						|
  void operator()(framework::InferShapeContext *context) const override {
 | 
						|
    PADDLE_ENFORCE(context->HasInput("XShape"),
 | 
						|
                   "Input(XShape) shouldn't be null.");
 | 
						|
    PADDLE_ENFORCE(context->HasInput(framework::GradVarName("Out")),
 | 
						|
                   "Input(Out@GRAD) shouldn't be null.");
 | 
						|
    auto xshape_dims = context->GetInputDim("XShape");
 | 
						|
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
 | 
						|
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
 | 
						|
    context->ShareLoD("XShape", framework::GradVarName("X"));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class Squeeze2GradOp : public framework::OperatorBase {
 | 
						|
 public:
 | 
						|
  using OperatorBase::OperatorBase;
 | 
						|
 | 
						|
 private:
 | 
						|
  void RunImpl(const framework::Scope &scope,
 | 
						|
               const platform::Place &place) const override {
 | 
						|
    auto dx_name = Output(framework::GradVarName("X"));
 | 
						|
    auto dout_name = Input(framework::GradVarName("Out"));
 | 
						|
    auto xshape_name = Input("XShape");
 | 
						|
    auto xshape_dims =
 | 
						|
        scope.FindVar(xshape_name)->Get<framework::LoDTensor>().dims();
 | 
						|
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
 | 
						|
 | 
						|
    framework::AttributeMap attrs;
 | 
						|
    attrs["shape"] = framework::vectorize2int(x_dims);
 | 
						|
 | 
						|
    auto reshape_op = framework::OpRegistry::CreateOp(
 | 
						|
        "reshape2", {{"X", {dout_name}}, {"Shape", {}}},
 | 
						|
        {{"Out", {dx_name}}, {"XShape", {xshape_name}}}, attrs);
 | 
						|
    reshape_op->Run(scope, place);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
// Tell linker to use reshape op
 | 
						|
USE_OP(reshape);
 | 
						|
 | 
						|
namespace ops = paddle::operators;
 | 
						|
REGISTER_OPERATOR(squeeze, ops::SqueezeOp, ops::SqueezeOpMaker,
 | 
						|
                  ops::SqueezeOpInferShape,
 | 
						|
                  paddle::framework::DefaultGradOpDescMaker<true>);
 | 
						|
REGISTER_OPERATOR(squeeze_grad, ops::SqueezeGradOp, ops::SqueezeGradInferShape);
 | 
						|
 | 
						|
REGISTER_OPERATOR(squeeze2, ops::Squeeze2Op, ops::Squeeze2OpMaker,
 | 
						|
                  ops::Squeeze2OpInferShape, ops::Squeeze2GradOpMaker);
 | 
						|
REGISTER_OPERATOR(squeeze2_grad, ops::Squeeze2GradOp,
 | 
						|
                  ops::Squeeze2GradInferShape);
 |