You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
241 lines
8.9 KiB
241 lines
8.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "CosSimOp.h"
|
|
#include "paddle/legacy/math/Matrix.h"
|
|
#include "paddle/legacy/math/Vector.h"
|
|
|
|
namespace paddle {
|
|
/**
|
|
* Cosine Similarity for CpuMatrix
|
|
*
|
|
* \param out_mat, output value, size: nSamples * 1.
|
|
* \param in1_mat, input value 1, size: nSamples * dim.
|
|
* \param in2_mat, input value 2, size: n2 * dim (n2 == 1 or n2 == nSamples).
|
|
* \param scale, default 1.0
|
|
*
|
|
*/
|
|
template <>
|
|
void CosSimForward<DEVICE_TYPE_CPU>(CpuMatrix& out_mat,
|
|
const CpuMatrix& in1_mat,
|
|
const CpuMatrix& in2_mat,
|
|
real scale) {
|
|
CHECK(out_mat.getData() && in1_mat.getData() && in2_mat.getData());
|
|
size_t num_samples = out_mat.getHeight();
|
|
size_t dim = in1_mat.getWidth();
|
|
/// column vector [nSamples, 1]
|
|
real* out = out_mat.getData();
|
|
const real* x = in1_mat.getData();
|
|
const real* y = in2_mat.getData();
|
|
|
|
/// in2 might only have one row or full rows
|
|
CHECK(in2_mat.getHeight() == 1LU || in2_mat.getHeight() == num_samples);
|
|
size_t inc = (in2_mat.getHeight() == 1LU) ? 0 : dim;
|
|
for (size_t i = 0; i < num_samples; ++i, x += dim, y += inc) {
|
|
real square_sum_x = 0;
|
|
real square_sum_y = 0;
|
|
real xy = 0;
|
|
for (size_t j = 0; j < dim; ++j) {
|
|
square_sum_x += x[j] * x[j];
|
|
square_sum_y += y[j] * y[j];
|
|
xy += x[j] * y[j];
|
|
}
|
|
CHECK(square_sum_x > 0 && square_sum_y > 0);
|
|
out[i] = scale * xy / (std::sqrt(square_sum_x) * std::sqrt(square_sum_y));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Cosine Similarity
|
|
* for each row i,
|
|
* out[i] = scale * cos(input1[i], input2[i])
|
|
* = scale * <input1[i], input2[i]>/sqrt(|input1[i]|^2 * |input2[i]|^2)
|
|
* when input2 only has one row, then for each row i,
|
|
* out[i] = cos(input1[i], input2[0])
|
|
*
|
|
* \param inputs[0] input matrix 1, size: nSamples * dim.
|
|
* \param inputs[1] input matrix 2, size: n2 * dim (n2 == 1 or n2 == nSamples).
|
|
* \param outputs[0] output matrix, size : nSamples * 1.
|
|
*/
|
|
|
|
template <DeviceType Device>
|
|
class CosSimForwardFunc : public FunctionBase {
|
|
void init(const FuncConfig& config) override {
|
|
scale_ = config.get<real>("scale");
|
|
}
|
|
|
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
CHECK_EQ(inputs.size(), 2UL);
|
|
CHECK_EQ(outputs.size(), 1UL);
|
|
|
|
CHECK_EQ(inputs[0].shape().ndims(), 2UL);
|
|
CHECK_EQ(inputs[1].shape().ndims(), 2UL);
|
|
CHECK_EQ(outputs[0].shape().ndims(), 2UL);
|
|
|
|
CHECK_EQ(inputs[0].shape()[0], outputs[0].shape()[0]);
|
|
CHECK_EQ(inputs[0].shape()[1], inputs[1].shape()[1]);
|
|
CHECK_EQ(outputs[0].shape()[1], 1UL);
|
|
|
|
CHECK(outputs[0].data() && inputs[0].data() && inputs[1].data());
|
|
|
|
CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);
|
|
auto out_mat = outputs[0].matrix<Device>();
|
|
const auto in1_mat = inputs[0].matrix<Device>();
|
|
const auto in2_mat = inputs[1].matrix<Device>();
|
|
|
|
CosSimForward<Device>(out_mat, in1_mat, in2_mat, scale_);
|
|
}
|
|
|
|
private:
|
|
real scale_;
|
|
};
|
|
|
|
/**
|
|
* Cosine Similarity Derivative for CpuMatrix
|
|
*
|
|
* \param in1_grad forward input grad 1, size: nSamples * dim.
|
|
* \param in2_grad forward input grad 2,
|
|
* size: n2 * dim (n2 == 1 or n2 == nSamples).
|
|
*
|
|
* \param out_grad backward loss output grad, size : nSamples * 1.
|
|
* \param out_val forward output value, size: nSamples * 1.
|
|
* \param in1_val forward input value 1, size: nSamples * dim.
|
|
* \param in2_val forward input value 2,
|
|
* size: n2 * dim (n2 == 1 or n2 == nSamples).
|
|
* \param scale, default 1.0
|
|
*/
|
|
template <>
|
|
void CosSimBackward<DEVICE_TYPE_CPU>(const CpuMatrix& out_grad,
|
|
const CpuMatrix& out_val,
|
|
const CpuMatrix& in1_val,
|
|
const CpuMatrix& in2_val,
|
|
CpuMatrix& in1_grad,
|
|
CpuMatrix& in2_grad,
|
|
real scale) {
|
|
CHECK(out_grad.getData() && out_val.getData() && in1_val.getData() &&
|
|
in2_val.getData() && in1_grad.getData() && in2_grad.getData());
|
|
CHECK_EQ(out_val.useGpu_, false) << "Matrix type are GPU, CPU required";
|
|
|
|
const real* grad = out_grad.getData();
|
|
const real* out = out_val.getData();
|
|
const real* prev_out_x = in1_val.getData();
|
|
const real* prev_out_y = in2_val.getData();
|
|
real* prev_grad_x = in1_grad.getData();
|
|
real* prev_grad_y = in2_grad.getData();
|
|
|
|
size_t num_samples = out_grad.getHeight();
|
|
size_t dim = in1_val.getWidth();
|
|
CHECK_EQ(in2_val.getHeight(), in2_grad.getHeight());
|
|
CHECK(in2_val.getHeight() == 1LU || in2_val.getHeight() == num_samples);
|
|
size_t inc = (in2_val.getHeight() == 1LU) ? 0 : dim;
|
|
for (size_t i = 0; i < num_samples; ++i,
|
|
prev_out_x += dim,
|
|
prev_out_y += inc,
|
|
prev_grad_x += dim,
|
|
prev_grad_y += inc) {
|
|
real square_sum_x = 0;
|
|
real square_sum_y = 0;
|
|
real xy = 0;
|
|
for (size_t j = 0; j < dim; ++j) {
|
|
square_sum_x += prev_out_x[j] * prev_out_x[j];
|
|
square_sum_y += prev_out_y[j] * prev_out_y[j];
|
|
xy += prev_out_x[j] * prev_out_y[j];
|
|
}
|
|
CHECK(square_sum_x > 0 && square_sum_y > 0);
|
|
if (xy == 0) {
|
|
real reciprocal =
|
|
1.0f / (std::sqrt(square_sum_x) * std::sqrt(square_sum_y));
|
|
for (size_t j = 0; j < dim; ++j) {
|
|
prev_grad_x[j] += scale * grad[i] * prev_out_y[j] * reciprocal;
|
|
prev_grad_y[j] += scale * grad[i] * prev_out_x[j] * reciprocal;
|
|
}
|
|
} else {
|
|
real reciprocal_xy = 1.0f / xy;
|
|
real reciprocal_square_sum_x = 1.0f / square_sum_x;
|
|
real reciprocal_square_sum_y = 1.0f / square_sum_y;
|
|
for (size_t j = 0; j < dim; ++j) {
|
|
prev_grad_x[j] +=
|
|
out[i] * grad[i] * (prev_out_y[j] * reciprocal_xy -
|
|
prev_out_x[j] * reciprocal_square_sum_x);
|
|
prev_grad_y[j] +=
|
|
out[i] * grad[i] * (prev_out_x[j] * reciprocal_xy -
|
|
prev_out_y[j] * reciprocal_square_sum_y);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Cosine Similarity backward Derivative
|
|
*
|
|
* \param outputs[0] forward input grad 1, size: nSamples * dim.
|
|
* \param outputs[1] forward input grad 2,
|
|
* size: n2 * dim (n2 == 1 or n2 == nSamples).
|
|
*
|
|
* \param inputs[0] backward loss output grad, size : nSamples * 1.
|
|
* \param inputs[1] forward output value, size: nSamples * 1.
|
|
* \param inputs[2] forward input value 1, size: nSamples * dim.
|
|
* \param inputs[3] forward input value 2,
|
|
* size: n2 * dim (n2 == 1 or n2 == nSamples).
|
|
*/
|
|
template <DeviceType Device>
|
|
class CosSimBackwardFunc : public FunctionBase {
|
|
void init(const FuncConfig& config) override {
|
|
scale_ = config.get<real>("scale");
|
|
}
|
|
|
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
CHECK_EQ(inputs.size(), 4UL);
|
|
CHECK_EQ(outputs.size(), 2UL);
|
|
/// dim of out_grad and out_val == 1, column vector
|
|
CHECK_EQ(inputs[0].shape()[1], 1UL);
|
|
CHECK_EQ(inputs[1].shape()[1], 1UL);
|
|
/// nSamples of out_grad == out_val == in_val1 == in_grad1
|
|
CHECK_EQ(inputs[1].shape()[0], inputs[0].shape()[0]);
|
|
CHECK_EQ(inputs[0].shape()[0], inputs[0].shape()[0]);
|
|
CHECK_EQ(outputs[0].shape()[0], inputs[0].shape()[0]);
|
|
/// dim of in1_val1 == in_val2 == in_grad1 == in_grad2
|
|
CHECK_EQ(inputs[3].shape()[1], inputs[2].shape()[1]);
|
|
CHECK_EQ(outputs[0].shape()[1], inputs[2].shape()[1]);
|
|
CHECK_EQ(outputs[1].shape()[1], inputs[2].shape()[1]);
|
|
|
|
CHECK(inputs[0].data() && inputs[1].data() && inputs[2].data() &&
|
|
inputs[3].data() && outputs[0].data() && outputs[1].data());
|
|
|
|
CHECK_EQ(outputs[0].getArgType(), ADD_TO);
|
|
CHECK_EQ(outputs[1].getArgType(), ADD_TO);
|
|
|
|
const auto out_grad = inputs[0].matrix<Device>();
|
|
const auto out_val = inputs[1].matrix<Device>();
|
|
const auto in1_val = inputs[2].matrix<Device>();
|
|
const auto in2_val = inputs[3].matrix<Device>();
|
|
auto in1_grad = outputs[0].matrix<Device>();
|
|
auto in2_grad = outputs[1].matrix<Device>();
|
|
|
|
CosSimBackward<Device>(
|
|
out_grad, out_val, in1_val, in2_val, in1_grad, in2_grad, scale_);
|
|
}
|
|
|
|
private:
|
|
real scale_;
|
|
};
|
|
|
|
REGISTER_TYPED_FUNC(CosSimForward, CPU, CosSimForwardFunc);
|
|
REGISTER_TYPED_FUNC(CosSimBackward, CPU, CosSimBackwardFunc);
|
|
#ifdef PADDLE_WITH_CUDA
|
|
REGISTER_TYPED_FUNC(CosSimForward, GPU, CosSimForwardFunc);
|
|
REGISTER_TYPED_FUNC(CosSimBackward, GPU, CosSimBackwardFunc);
|
|
#endif
|
|
} // namespace paddle
|